Property account simulation using a stochastic matrix

Harold Monroe Hoover Jr.
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd
Part of the Industrial Organization Commons, and the Operations Research, Systems Engineering and Industrial Engineering Commons

Recommended Citation

Hoover, Harold Monroe Jr., "Property account simulation using a stochastic matrix " (1972). Retrospective Theses and Dissertations. 5921.
https://lib.dr.iastate.edu/rtd/5921

73-3894

HOOVER, Jr., Harold Monroe, 1943PROPERTY ACCOUNT SIMULATION USING A STOCHASTIC MATRIX.

Iowa State University, Ph.D., 1972
Engineering, industrial

University Microfilms, A XEROXCompany , Ann Arbor, Michigan
Property account simulation using astochastic matrix
byHarold Monroe Hoover, Jr.
A Dissertation Subritted to the Graduate Faculty in Partial Fulfillment of The Reguirements for the Degree of DOCTOR OF PHILOSOPGY
Department: Industrial Engineering Major: Engineering Valuation
Approved:
Signature was redacted for privacy.
In Charge of Major Wgrk
Signature was redacted for privacy.
For the Major Department
Signature was redacted for privacy.
For the Graduate College
Iova State University Ames, Iowa1972

PLEASE NOTE:

Some pages may have
indistinct print.
Filmed as received.

University Microfilms, A Xerox Education Company

TABLE OF CONTENTS
INTRODUCTION 1
The Desirability of Simulating Property Accounts 2
Review of Property Account Simulators 8
Thrust of Research 12
THEORETICAL BASIS AND CONSTROCTION OF THE PROPERTY account gederator 14
Deterministic Elements of a Stochastic Matrix for a Vintage Account 14
Deterministic Elements of a Stochastic Matrix for a Continuous Account 18
Approximations 21
Stochastic Elements of a Stochastic Matrix 26
Features and Capabilities of the Property Account Generator 28
RESULTS AND DISCUSSION 32
CONCLUSIONS 56
BIBLIOGRAPHY 59
ACKNOMLEDGEMENTS 61
APPENDIX I: DOCUMENTATION OF THE COMPUTER PROGRAM 62
Section A: Program Listing 63
Section B: Flowcharts 81
Section C: Main Program and Subroutines 118
Section D: Major Arrays and Variables 132
appendix II: MISCELLANEOUS FORMOLA DEVELOPMENT 139
APPENDIX III: PROBABILITY OF UISCLASSIFICATION 141
APPENDIX IV: TABULATION OF TRIALS 1-4 143
APRENDIX V : TABOLATION OF TRIAL 5 147
APPENDIX VI: SOMMARY OF TRIAL 5 151
apPendix vil: probability of misclassification data 153

INTRODUCTION

The prognostication of mortality characteristics of industrial property，commonly called life analysis and estimation，is important because it is critical input to the decision making processes of industrial firms and various government agencies．Major areas of public utility regula－ tion，income tax calculation，and corporate economic decisions are all affected by these characteristics．

Mortality characteristics usually have been ascertained by one of three techniques；the actuarial methods，the turnover methods，and the forecast methods（1）．The majority of the research has been associated with the actuarial methods and has taken two distinct paths．One path the investigators have trod is finđing mortality laws that better describe the retirement pattern of property．A mortality law may be described as a probability density function $f_{\text {f }}$ where $f(x)$ is the percentage of units or dollars placed which are retired in the x age interval．This is well illustrated by the works of $⿴ 囗 十$ infrey and Kurtz（20）．Winfrey（18）．Couch（4）． Kimball（11），Cowles（5），and Henderson（8）．The second path represents the work accomplished in finding andor applying better techniques in which the mortality laws of industrial property are used．Research works of Winfrey（18）．Nichols （14）．Lamp（12），and \quad hite（17）are illustrative of these in－
vestigations.
Presently questions are being raised as to how the various techniques and mortality laws of life analysis compare with one another. Further questions are being asked about the accuracy and sensitivity of the life analysis techniques. The probe was begun in these areas with the work of Henderson (9). Other questions are being asked concerning the behavior of the depreciation reserve (13, p. 229) since the Internal Revenue Service and state and federal public utility commissions regard the depreciation reserve as a value to be considered in the process of making tax and rate regulation decisions. Pollock's (16) work was a beginaing' which illustrated the importance of depreciation reserve in income tax analysis.

The Desirability of Simulating Property Accounts

In order to analyze the various life analysis teckniques, a property account must be realistically constructed following a given mortality law and a given set of economic conditions. Once constructed, several general types of investigations may take place. First, the various life analysis techniques may be compared to one another: second. the life analysis procedures may be compared to a known standard; and third, these various methods may be examined for
their sensitivity to detect change in the mortality characteristics. The impact of such an analysis would be observed by more accurate income tax calculations, subsequently better net income and balance sheet statements, and more effective corporate economic decisions and corporate models.

To be able to understand the behavior of the depreciation reserve also requires a simulated property account which realistically follous a given mortality law. Within the past few years a proposition (16, p. 34):
"In its present form the reserve ratio test gives an accurate determination of the degree of conformity between tax lives and actual lives...." reflects the current thinking of the iaportance of the reserve ratio in the decision making process of the Internal Revnue Service. Public utility comaissions have long looked at the depreciation reserve account and based numerous decisions on rate base, rate increase, and general regulation on what they found. To understand the behavior of the depreciation reserve account and apply such knowledge in a decision making process would require an analysis of the reserve variations and the range of values which they cover.

The previous paragraphs have stated in general teras the desirability of understanding the behavior of the depreciation reserve and the evaluation of life estimation techniques. To understand what precisely must be accomplished, a closer look must be taken at what the investiga-
tions will involve.
Consider first the area of depreciation reserve behavior analysis. In order to define the depreciation reserve account two specifications must be given. First the depreciation method, which supplies the depreciation base from information generated by the property account, must be described. Second, the depreciation rate, which is multiplied by the base to determine the depreciation charge, must also be given.

It is noted that there are three representations of the depreciation reserve. These values will be referred to as pure, theoretical, and simulated depreciation reserve. The pure depreciation reserve in any year would be calculated from a deterministic set of property retirement experiences applied to a suitably defined property account and reserve account. It represents the value of reserve if all pust property placements have conformed exactly to the given mortality law.

The theoretical reserve is a calculation based on the amount cf property in service in a particular year, on the age of the property, and on the depreciation method and procedure. Let the depreciation charge be calculated by the straight line method, average life procedure. If $P(x, y)$ represents the percentage or dollar amount of property in service with age x in year y then the theoretical reserve in
year y is calculated by $P(x, Y)(1-\operatorname{Expect}(x) / A S L)$ where $x=1,2,3, \ldots, n .(13, p, 227)$ Expect (x) denotes the expectancy at age x where Execpt $(x)=\sum k f(k+x) f(k+x)$ where $k=$ 1,2,3,...n. ASL = average service life of the property and is calculated by ASL $=\sum x f(x)$ where $x=1,2,3, \ldots, n$. This method assumes that the property retirements in the future will exactly correspond to the given mortality law. Thus the technique yields an exact value of depreciation reserve which is sufficient, given the present property in service will follow exactly the mortality law. If the previous retirement experience before the year in question exactly conforms to the stated mortality law, then the pure and theoretical reserve will be the same.

The simulated value of depreciation reserve is calculated dynamically year by year and conforms to the past and present retirement experience of the property account. Like the theoretical reserve, if the simulated values correspond exactly to the specified mortality lav the values would be equal to the pure reserve calculation. It would also seem reasonable that the central tendency of either simulated or theoretical depreciation reserve in any one year would be close to the pure reserve value.

As a beginaing to understand the behavior of the depreciation reserve accounts, comparisons among the pure, the central tendency of the theoretical, and the central
tendency of the simulated depreciation reserves might be useful. An analysis of the variations about the central tendencies might also reveal the type and extent of decisions which could be made.

In the previous comments it was assumed for comparative purposes that the specifications of the property account and the depreciation reserve account as well as the characteristics of the mortality law vere held constant. The property account specifications are two-fold. Whether an account is open or closed must be given (16, p. 21). Secondly, if the account is open ended then the growth characteristics must be described. Characteristics of a mortality law may be described as all the parameters which specify the probability density function of retirements $f(x)$. Major variations in value of $f(x)$ will be referred to as trends whereas minor variations will be called random fluctuations. It is recognized that it is important to ascertain the differences in behavior of the depreciation reserve under a variety of conditions. These comparisons must be made in order to understand the effects of changes in mortality law characteristics, in depreciation reserve account specifications, and in property account growth patterns on the depreciation reserve. Only by broad based research into these areas will conclusions be forthcoming about the effectiveness of the depreciation reserve as a factor in specific decision making
processes.
The evaluation of life analysis techniques has already begun with the investigations of Henderson. His objective was "to select the functions most commonly used in actuarial life analysis and to test them empirically by comparing their ability to fit simulated and actual mortality data ${ }^{19}$ (9. p. 32). Another area of investigation would be to ascertain the accuracy of various mortality fitting techniques. Still another would be to determine the effect of growth of the property account on the accuracy of the methods of life estimation determinations and/or the goodness of fit of the commonly used mortality laws. The sensitivity of the life estimation methods yields yet another fruitful field for investigation. The primary question being, can the estimation procedure ascertain an actual change in growth or change in mortality characteristics and ignore random fluctuations. Hell constructed investigations in the aforementioned areas will lead the way not only toward better corporate models and economic decisions, but also towards more effective decision making processes of our state and federal agencies whose actions have such a tremendous impact on corporations.

Review of Property account Simulators

Abstract

In order to discuss the features of property retirenent simulators which have been constructed by Pollock, Lamp. Henderson, and White, a discussion of the methods of classification of property retirement generators is required.

Retirement experience simulators may be classed in two areas: deterministic and non-deterministic. If the procedure for generation of retirement experience follows the mortality dispersion exactly for each placement of property, then such a technique is called deterministic simulation. It is recognized that in actuality the property retirements do not exactly follow a smooth mortality law. If economic conditions such as major trends and random fluctuations are part of the simulation then the property account generator is referred to as non-deterministic simulation. Thus, retirements in the k age interval of a vintage placement are modeled deterministically as $f(k)$ whereas they would be described non-deterministically as $f(k)+q$ here q is the deviation or irregularity from the expected mortality law $f(k)$.

The first major property account generator built was Pollock's. His retirement experience simulator was deterministic. The property account could be specified as either closed or open ended with an option of a non-stochastic grouth factor in the latter. The reserve account could be

calculated using one of three depreciation methods：straight line，sum－of－the－year－digits，or double declining balance． Since such a simulator did not attempt to model irregularities from the specified mortality law it could not be very representative of an actual property account．

Following Pollock was the work of Lamp．$⿴ 囗 ⿱ 一 一$ required the use of a non－deterministic simulator，but not the application to t he construction of a property account as an input to make a depreciation reserve account．To be able to generate deviations from his specified mortality law，Lamp used a simple Monte Carlo technique by which he sampled from his given age－life mortality distribution（4．p．136）．The result was a new mortality dispersion $h(k)$ wich closely resembled the parent mortality distribution $f(k)$ ．Obviously any irregularity q was equal to $f(k)-h(k)$ and thus gave an approximation of the observed behavior of actual property accounts．Lamp stated in one of his conclusions，＂The vari－ ance of distribution of retirement ratios for a given age in－ terval decreases as the vintage group size increases＂ （12．p．131）．This，of course，would be expected since $\mathrm{g}_{\text {，}}$ the deviation，is inversely proportional to the vintage group size or sample size（15，p．61）．

Part of Henderson＇s research required a set of simulated property retirement experiences which smoothly followed a specified mortality distribution and also retirements which
vere nore irregular. His method of achieving this was to apply Monte Carlo simulation, as did Lamp, to a given mortality distribution. Henderson stated, "The size of the large sample was selected such as to make the resulting life table relatively smooth.... The size of the small sample was subjectively chosen with the objective in mind of simulating commonly encountered irregular datan (9, p. 81).

White's work was stimulated by the same objectives as this research (17; p. 1). That is, a property retirement experience generator was needed to examine the validity of life analysis techniques in use today as well as ascertain the behavior of the depreciation reserve account under a variety of conditions. His retirement generator was based on the same Monte Carlo technique which Lamp and Henderson used, but the results were applied to an open end account with an option of using a stochastic growth factor. The mortality simulation was more elegant since it was possible to change mortality characteristics and groperty account grouth factors at will. The Bonte Carlo simulation utilized not only placement of units, but also dollars with the option of the price per unit being a stochastic value. As was the case with the retirement experience simulator of Henderson and Lamp, White's simulator of deviations, $g=f(k)-h(k)$ was dependent on the number of samples, though he could, in a limited fashion, vary his sample size, from the parent mortality law.

At this point a problen which was not solved became apparent. If the mortality law could be changed, then how would its change affect the retirement of property previously placed?

An example of this problem would be to consider a placenent of property ten years ago where it is expected that the last dollar to be retired will occur at an age of fourteen and one half years. presently a placement of property retirements follow another mortality distribution whose last dollar to be retired occurs at an age of eight and one half years. Obviously the presently placed property is retiring faster than that placed ten years ago. This may be due to a variety of reasons such as technological obsolescence, corporate policy, or excessive use. It is important in the simulation of property accounts to adjust the retirements of the older policy in light of the present mortality characteristics.

It appears obvious that the Monte Carlo technique used in the manner in which White, Lamp, and Henderson applied it has limited usefulness in generating realistic property accounts. The difficulty was suggested by both Henderson and Lamp in the fact that the deviations q fron mortality law $f(k)$ were a function of sample size. This would imply that any useful conclusion would first have to prove that the selected sample size used to make irregularities would generate
a realistic retirement experience whose characteristics would relate well to those observed in actual property accounts.

A second reason why the aforementioned technique works poorly is that once a placement of property has been distributed by the Monte Carlo procedure there is no provision to relate the retirement of the x year and subsequent years with conditions either external or internal to the company which start and continue in year x . This major flaw would make it extremely difficult to implant the Monte Carlo technique of property acconnt simulation as a subsection of a larger corporate model.

Thrust of Research

The previous discussion has made clear that a better property account generator is required before any conclusive results may be obtained. It was the major emphasis of this research first to find a new concept around which a retirement experience simulator could be built and then build such a device. Once built, a series of trial runs were to be made to ascertain the effectiveness of the generator.

The evaluation of the trials would be two-fold. First the major characteristics of the generator would be analyzed and compared to existing property acconnt simulators. Second, a cursory inspection would be made of several areas of
interest. The inspection would consist of graphically illustrating various results of the trials and conducting appropriate statistical tests on the information generated. It would also include any calculations which might be conceptually interesting. Though the evaluation might contain several limited conclusions as a result of the cursory inspections, it must be remembered that the major thrust was to find, build, and test a property account generator which has the capability of successfully giving information concerning the areas of life analysis and depreciation reserve described in the previous sections.

THEORETICAL BASIS AND CONSTRUCTION
OF THE PROPERTY ACCOUNT GENERATOR

A stochastic matrix, with non-negative elements and unit row sums, P, (7, p. 375) which controls the retirement of property whose remaining life is represented by a position in a vector D, is the basis of the property account simulator. The discussion of the development of the matrix and its final application to a retirement experience simulator follows in the next five sections. Section one discusses the basic development and application to a vintage property account. The second section applies this development to a continuous property account. Section three states the various approximations required in order to relate the work to common usage of the practitioners in the field. The fourth section describes the effect of changing the elements in the stochastic matrix. The last section describes in detail the capabilities of the property account simulator.

> Deterministic Elements of a Stochastic Matrix for a Vintage Account

Let the vector $D=[d(r), d(1), d(2), \ldots, d(n)]$ where $d(r)$ is the unit or dollar amount of property retired. Then $d(1)$ denotes the amount of property with one year of life remaining, and $d(n)$ represents the amount of property with
n years of life remaining (21, p. 717). Let $D^{\prime}(i)$ and $D(i)$ denote the property vector D at the beginning and end of period i respectively. If $f(x) \quad x=1,2, \ldots, n$ represents a mortality law of the property then the $D(i)$ vector appears as follows for k dollars placed in service.

Beginning of period

$$
D^{\prime}(1)=[0, k f(1), \operatorname{kf}(2), \ldots, k f(n)]
$$

$$
D^{\prime}(2)=[k f(1), k f(2), k f(3), \ldots, k f(n), 0]
$$

$$
D^{\prime}(3)=[k f(1)+k f(2), k f(3), \ldots, k f(n), 0,0]
$$

End of Period
$D(2)=[k f(1), k f(2), k f(3), \ldots . . \operatorname{kf}(n), 0]$
$D(2)=[k f(1)+k f(2), k f(3), \ldots, k f(n) 0,0]$
$D(3)=[k E(1)+k f(2)+k f(3), \ldots . . \operatorname{kf}(n), 0,0,0]$
Let matrix P be dimensioned $n x n$ with ones in the lower left diagonal and a one in the upper left hand corner. (21. p. 716)

$$
P=\left|\begin{array}{cccccc}
1 & 0 & 0 & 0 & \ldots & 0 \\
1 & 0 & 0 & 0 & \ldots & 0 \\
0 & 1 & 0 & 0 & \ldots & 0 \\
0 & 0 & 1 & 0 & \ldots & 0 \\
. & . & . & . & \ldots & 0 \\
0 & - & . & . & \ldots & 0 \\
0 & 0 & 0 & 0 & \ldots & 0
\end{array}\right|
$$

Multiplying vector D with matrix P yields the following result.

$$
\begin{aligned}
& D(1)=D^{\prime}(1) P \\
& D(2)=D(1) P \\
& D(3)=D(2) P
\end{aligned}
$$

$$
D(k)=D^{\prime}(1) P^{k}
$$

The previously developed expressions may be more clearly understood by considering the following example. Let $f(x)$. the percentage retirements per period, be defined as

x	$\mathrm{f}(\mathrm{x})$
1	.2
2	.3
3	.5

such that if k, the initial plecement, is $\$ 100$ then $D^{\prime}(1)=(0,20,30,50)$. Let matsix P be constructed as

$$
P=\left|\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right|
$$

The values of $D^{\prime}(x)$ and $D(x)$ at the beginning and end of a time period for a vintage account are the following.

Beginning of Period
$D^{\prime}(1)=(0,20,30,50)$
$D^{\prime}(2)=(20,30,50,0)$
$D^{\prime}(3)=(50,50,0,0)$
End of Period
$D(1)=(20,30,50,0)$
$D(2)=(50,50,0,0)$
$D(3)=(100,0,0,0)$

It is observed that

$$
\begin{aligned}
& D(1)=D^{\prime}(1) P \\
& D(2)=D(1) P \\
& D(3)=D(2) P
\end{aligned}
$$

and by substitution that $D(k)=D^{\prime}(1) P$.
It is obvious that the stochastic matrix P controls the flow of property through vector D. The concepts, where footnoted, were described in articles by Zannetos (21) (22). His papers suggested that with such a mathematical description, new procedures for calculating depreciation charges as well as new methods for allocation might result. Zannetos also believed the established rigor of discrete mathematics as related to the stochastic matrix would be of help in solving problems associated with the areas of depreciation and life estimation.

1
In his description of the property vector D, Zannetos made no attempt to differentiate between the beginning or end of one transaction period. Because of this, the two formulas he developed to calculate depreciation charges appear to be in error. The first formula described was to calculate the depreciation charge of a vintage account using the straight line method, average life procedure. Letting $D C(x)$ represent the depreciation charge in year x_{0}, the formula was $D C(x)=\left[D^{\prime}(1)-D(x)\right] N P / n$ where $N=(0,1,2, \ldots, n)$ and N^{\prime} is its transpose. The denominator should be the average service
life rather that the maximum life n. Let ASL denote average service life, the $A S L=\sum x f(x)$ where $x=1,2,3, \ldots, n$ and the correct formula written as $D C(x)=\left[D^{\prime}(1)-D(x)\right] N^{\prime} / A S L$. His second formula, a calculation of depreciation charge for large x, was $D C(x)=(D(x)-D(x+1)) N 1 / n$. In a no growth continuous property account $D(x)$ and $D(x+1)$ are equal for large x and therefore his calculated depreciation charge is always zero. This cannot be correct since for the depreciation reserve to stabilize, which it does for the straight line method, average life procedure, the dollars of retirement equal the dollars of annual depreciation charge. It is also observed that the denominator should be ASL. The correct formula is $D C(x)=\left[D^{\prime}(x)-D(x)\right] N^{\prime} / A S L . ~ T h e r e ~ i s ~ n o ~$ provision for salvage value consideration in either of his formulas, so it was assumed in analyzing the equations that salvage value was zero, and both corrections are based on this assumption.

Deterministic Elements of a Stochastic Matrix for a
Continuous Account

The D property vector representing a continuous no growth property account operating with mortality law $f(x)$. $x=1,2,3, \ldots, n$, acts in the following manner.

$$
\begin{aligned}
& \text { Beginning of period } \\
& D^{\prime}(1)=[0, k f(1), k f(2), k f(3), \ldots . . \operatorname{kf}(n)] \\
& D^{\prime}(2)=[0, k f(2)+k f(1) f(1), k f(3)+k f(1) f(2) \text {. } \\
& k f(4)+k f(1) f(3), \ldots . ., k f(1) f(n)] \\
& D^{\prime}(3)=[0, k f(3)+k f(1) f(2)+\{k f(2)+k f(1) f(1)\} f(1) . \\
& k f(4)+K f(1) f(3)+\{K f(2)+k f(1) f(1)\} f(2) . . . \\
& \ldots\{k f(2)+k f(1) f(1)\} f(n)] \\
& \text { END OF PERTOD } \\
& D(1)=[k f(1), k f(2), k f(3), k f(4), \ldots, k f(n), 0] \\
& D(2)=[k f(2)+k f(1) \hat{x}(1), k f(3)+k f(1) f(2), k f(4)+ \\
& k f(1) f(3) k f(1) f(n), 0] \\
& D(3)=[k f(3)+k f(1) f(2)+\{k f(2)+k f(1) f(1)\} f(2), \ldots \\
& \text {.. }\{k f(2)+k f(1) f(1)\} f(n) .0]
\end{aligned}
$$

The $d(r)$ position now may represent the property to be renewed. At the beginning of the period this value is always zero. Whereas, at the end of the period some property may have retired and $d(r)$ represents this amount of retirement or the amount to be renewed. This amount is placed in service and distributed according to its mortality law as illustrated in the previous equations.

If a matrix P is defined as

$$
\mathrm{P}=\left|\begin{array}{llllll}
f(1) & f(2) & f(3) & \ldots & f(\mathrm{n}) & 0 \\
1 & 0 & 0 & \ldots & 0 & 0 \\
0 & 1 & 0 & \ldots & 0 & 0 \\
0 & 0 & 1 & \ldots & 0 & 0 \\
0 & . & . & \ldots & . & 0 \\
\dot{0} & 0 & 0 & \ldots & \dot{1} & \dot{0}
\end{array}\right|
$$

then

$$
\begin{aligned}
& D(1)=D^{\prime}(1) P \\
& D(2)=D^{\prime}(1) P \\
& D(3)=D(2) P \\
& \cdots \cdots \cdots \cdots \\
& D(k)=D^{\prime}(1) P^{k}
\end{aligned}
$$

In order to more closely follow the aforementioned development consider the following example. Let $f(x)$, the mortality distribution, be defined as

x	$f(x)$
1	.6
2	.4

such that if k, the amount of original placement, is $\$ 100$ the $D^{\prime}(1)=(0,60,40)$. Let matrix F be constructed as

$$
P=\left|\begin{array}{lll}
0.6 & 0.4 & 0.0 \\
1.0 & 0.0 & 0.0 \\
0.0 & 1.0 & 0.0
\end{array}\right|
$$

The values of $D^{\prime}(x)$ and $D(x)$ at the beginning and end of a time period respectively for a no growth continuous account are

$$
\begin{aligned}
& \text { Beginning of Period } \\
& D(1)=(0,60,40) \\
& D(2)=(0,76,24) \\
& D^{\prime}(3)=(0,69.6,30.4)
\end{aligned}
$$

$$
\begin{aligned}
& \text { End of Period } \\
& D(1)=(60,40,0) \\
& D(2)=(76,24,0) \\
& D(3)=(69.6,30.4,0)
\end{aligned}
$$

As was noted in the previous vintage account

$$
\begin{aligned}
& D(1)=D^{\prime}(1) P \\
& D(2)=D(1) P \\
& D(3)=D(2) P
\end{aligned}
$$

and by substitution that $D(k)=D^{\prime}(1) P^{k}$.
A matrix P. nearly identical, was described by Ijiri (10) when he analyzed the pattern of periodic reinvestments in depreciable assets when the amount of reinvestment was set equal to the depreciation charge. The difference in the two matrices was that the first row of the Ijiri matrix represented the portion of property to be depreciated in the x year, rather than the property physically retired. An identical matrix P was described in Feller as a recurrent set of events and residual waiting times (7, p. 381).

Approximations

The discussion thus far has been a description of the basis of another concept of property retirement simulation. During construction of the property account generator it was recognized that some adjustments must be made in order to
conform to common practice. Such changes were also required if the results obtained were such that they could be compared to the few cases which had been previously calculated. Accordingly, this section discusses the required approximations, their conceptual development, and how they differ with the state of the art as observed today.

The stochastic matrix $P^{\prime}=P$ for a continuous account when K approaches infinity may be described as

$$
P^{\prime}=\left|\begin{array}{llll}
Q(1) & Q(2) & \cdots & Q(n) \\
Q(1) & Q(2) & \cdots & Q(n) \\
\cdot & \cdot & \cdots & \cdot \\
\cdot & \cdot & \cdots & \cdot \\
\cdot & \cdot & \cdots & \cdot \\
Q(1) & Q(2) & \cdots & Q(n)
\end{array}\right|
$$

It has been well established and documented by Cox (6). Feller (7), and Kimball (11), that $Q(1)=1 / \sum x f(x)$ $x=1,2 \ldots, \ldots$. $0(1)$ is commonly called the retirement rate and is equal to the inverse of the average service life of the property.

In considering a vintage account as controlled by matrix P. it is implicit that all retirements occur at the end of each interval. This creates a stair-stepped survivor curve as shown in Figure 1. The retirement rate equals $1 / \sum x f(x) \quad x=1,2, \ldots, n$.

Common practice and calculation of the retirement rate are based on the survivor curve shown in Figure 2.

Figure 1. Stair Stepped Survivor Curve

Figure 2. Regular Survivor Curve

The $A S L=(f(1) / 4)+\sum(x-1) f(x) \quad x=1,2 \ldots, \ldots$. It is assumed that the original placement occurs in the middle of the first interval, that retirements are uniform over an interval, and that the end of an interval or time period may also be represented as the age of the property. The retirement rates of these two survivor curves differ quite markediy. Their denominators which are the respective average service lives, have a difference of $1-f(1) / 4$. Appendix II.A. illustrates these calculations. This quite large difference in retirement rates is all due to the aforementioned assumptions.

In order to simulate a continuous property account, an assumption is required relative to the timing of replacements. It is a reasonable proposition that retirements occur uniformiy during an age interval, and in order to keep the property accounts at full service, any retirement must be immediately replaced.

If $k f(1)$ retire during the first interval, then an amount of $\mathrm{kf}(1)$ must be immediately replaced. If there are retirements from these renewais, then an additional $k f(1)^{2}$ must also be replaced. Continuing this argument adinfinitum, a sum of a geometric series is obtained whose value approaches $k f(1) /(1-f(1))$.

For the first age interval of any vintage account, whether it is a replacement or initial property placement, it
will be assumed that an additional amount equal to the expected retirement will be placed with the original placement. Thus, all the property in the account at the end of the first interval will have an age of one half. This assumption now changes the first row of the P matrix to $g(x)=f(x+1) /(1-f(1)) \quad x=1,2, \ldots, n-1$.

$$
P^{\mathbf{c}}=\left|\begin{array}{lllllll}
g(1) & g(2) & g(3) & \ldots & g(n-1) & 0 & 0 \\
1 & 0 & 0 & \ldots & 0 & 0 & 0 \\
0 & 1 & 0 & \ldots & 0 & 0 & 0 \\
0 & 0 & 1 & \ldots & 0 & 0 & 0 \\
0 & 0 & . & \ldots & 0 & 0 & . \\
\dot{0} & 0 & 0 & \ldots & 0 & 1 & \dot{c}
\end{array}\right|
$$

The Q^{\prime} matrix of p^{\prime} defines $Q^{\prime}(1)=1 / \sum x g(x)$ where $x=1,2, \ldots, n-1$. The difference between the average service life as calculated in common practice and the inverse of Q'(1) plus the adjustment is barely perceptable. Appendix II. B. demonstrates the aforementioned calculations. If $f(1)$ equals zero there is no difference in the two average service life calculations.

Stochastic Elements of a Stochastic Matrix

From previous discussion it has already been established that the function of matrix P is to control the flow of property through vector D. The use of ones in the lower left diagonal make the system deterministic since after the lapse of a period the amount of property with x years of
life remaining will automatically have only $x-1$ years of service left.

Changing the matrix p, yet still retaining its stochastic properties, as shown below, creates a system where the property in vector D would not retire as fast as would be expected. Such a system has been previously described as non deterministic since it doesn't automatically shift the property down the D vector as before.

$$
P=\left|\begin{array}{llllll}
g(1) & g(2) & g(3) & \ldots & 0 & 0 \\
p & q & 0 & \cdots & 0 & 0 \\
0 & p & q & \cdots & 0 & 0 \\
0 & . & p & \cdots & \cdot & \cdot \\
0 & \cdot & \cdot & \cdots & 0 & \cdot \\
0 & \dot{0} & 0 & \cdots & p & \cdot
\end{array}\right|
$$

The P matrix could also be changed to
which would speed up the retirement of property in vector D.
The selection of q only to the immediate left or right of the lower left diagonal reflects the viewpoints that during any time period the remaining life of part of the property will gain or lose one period. This change of the element of P yields a powerful tool to model the effect of any force which either enhances or delays property
retirement.

Features and Capabilities of the Property Account Generator

The basis of the property retirement simulator is the control of the D vector by the P matrix. The general form of the p matrix which was selected is the following.

$$
\mathrm{P}=\left|\begin{array}{llllllll}
g(1) & g(2) & q(3) & g(4) & \ldots & g(n-1) & 0 & 0 \\
b & c & 0 & 0 & \ldots & 0 & 0 & 0 \\
a & b & c & 0 & \ldots & 0 & 0 & 0 \\
0 & a & b & c & \ldots & 0 & 0 & 0 \\
0 & & & & & & & \cdot \\
\bullet & 0 & 0 & 0 & \ldots & a & b & c
\end{array}\right|
$$

The computer program was developed such that the elements within the P matrix will model forces which delay or enhance property retirements. This section describes the various features of the property account generator.

There are several features of the property account generator which are not related directly to the P matrix. The first feature is the capability to specify one characteristic of the property account: the growth pattern. This pattern may be changed any number of times in any time period. The property account was pre-determined to be open ended. A depreciation reserve account was constructed and was pre-determined to use the straight line method, average life procedure of depreciation. The depreciation rate could be changed in any period any number of times. Another set of
features is that the property accounts and the reserve accounts for each year are kept separate from one another. This provision is mandatory if evaluation of subjects within the life estimation area and observation of the depreciation reserve characteristics are to be accomplished. Other features revolve around the concept that for the property account simulator to be useful it must be able to generate many sets of property records given a set of specifications for the property account and mortality characteristics. Thus, the property account generator was constructed with these characteristics. The property account generator also has routines which gather designated reserve and renesal information. It then organizes these facts into tables and histograms.

The remaining features built into the property account generator revolve around construction of the elements of matrix P. Recognizing that even with no major forces working to enhance or delay retirements, there are minor fluctuations in the system which have a small effect on the flow of property through vector D. A provision has been made to specify a distribution from which a periodic random selection is made in order to simulate these minor fluctuations in property retirements.

Major variations in property retirements, previously referred to as trends, may be incorporated into the P
matrix. Provisions were made to assign trends in any designated period and also to be able to change trend percentages in any desired period.

The last two features of the retirement experience generator relate to the mortality law. The group of mortality laws utilized are called the Iowa Survivor Curves (18, p. 70,72). These curves are described as right, left and symmetric modal by R, L, and S respectively. A subscript follows to designate the shape of the distribution. Lastly, the average service life is added to the information about the mortality law. An $S(3)-5$ would describe a symmetric mortality law of shape three and average service life of five years. Provision has been made to change not only the type and shape of the distribution, but also the average service life. This feature together or singularily may be utilized in any designated time period as frequently as desired. If a change in average service life was required, then previous account's flon through rates were adjusted to the difference of the inverse of the old average service life and the new average service life. The calculations are shown in Appendix II.C.

Dith the aforenentioned capabilities it was expected that a property account would be developed whose characteris-tics-fullowed actual accounts closely enough that tests could be condncted on the simulated accounts, and meaningful con-
clusions could be drawn. A detailed description of the computer program is found in appendix I.

RESULTS AND DISCUSSION

The results of the five simulations trials are presented in this section. The major purpose of these trials was to evaluate the effectiveness of the retirement experience generator. It was also desired to use these trials to make a cursory inspection of the reserve behavior. The format used to describe these five trials will be a general description of the trial or trials, a graphical presentation of the results, and a discussion of the significant information illustrated. The final section of this chapter presents suggestions for improvement of the property account generator.

Before the five major trials were run, a preliminary set of trials was utilized to provide a better understanding of the computer program. It was observed that one simulation or property account construction of length twenty years cost seventy cents. The cost of a longer time period increased exponentially. It was decided that any test to be run would be accomplished using a sample size of thirty and a maximum of twenty years of property account generation. A larger sample of size fifty was tried, but it seemed to provide very little extra information considering the extra cost involved. Because the property account generator was limited to twenty years, the trials were run using a mortality dispersion with
an average service life of five years unless otherwise specifically stated. The average service life of five years enabled the account to cover four life cycles of the property. From previous experience this seemed reasonably adequate for observation purposes when studying the behavior of the depreciation reserve.

These preliminary runs were also used to select a probability distribution which represented the random fluctuations of property flowthrough to retirement. The four distributions tested are listed below. The percentage fluctuation is represented by x and $P r(x)$ denotes the probability of its occurrence.

	1		
$\mathbf{x} \%$	Pr (x)	$\mathbf{x \%}$	$\operatorname{Pr}(x)$
-20	.025	-20	.05
-10	.10	-10	.10
-5	.25	-5	.20
0	.25	0	.30
5	.25	5	.20
10	.10	10	.10
20	.025	20	.05

$\mathbf{x \%}^{3}$			
-10	$\operatorname{Pr}(x)$	x早	$\operatorname{Pr}(x)$
-5	.10	-5	.05
0	.25	-3	.20
5	.30	0	.50
10	.25	3	.20
	.10	5	.05

The fourth distribution, which hereafter will be referred to as distribution four, appeared to yield what was thought to be a reasonable approximation of the random fluctuations.

Before any critique may be made on the correctness of selecting distribution four, it must be observed that the choice of elements has a direct bearing on the result of such a selection. Note carefully that the P matrix was selected to be of the following form.

$$
P=\left|\begin{array}{llllllll}
g(1) & g(2) & g(3) & g(4) & \ldots & g(n-1) & 0 & 0 \\
b & c & 0 & 0 & \ldots & 0 & 0 & 0 \\
a & b & c & 0 & \ldots & 0 & 0 & 0 \\
0 & a & b & c & \ldots & 0 & 0 & 0 \\
\bullet & & & & & & & \cdot \\
\bullet & 0 & 0 & 0 & \ldots & a & b & c
\end{array}\right|
$$

This form of the retirement model implies the effect of property flowthrough to retirement is felt equally in each year. It is recognized that this is one of many ways in which the matrix could be built. A possible suggestion would be to establish the b values to be exponentially dampened. For example, $b(r)=1-[1-b(2)] \exp (1-r / 2) k$ where $b(r)$ is the b value in row r, and k is some dampening constant. This would have the effect of retirements in later years not as dependent on present flowthrough characteristics. obviously there are many positions not utilized in the present construction of the P matrix which implies there are a multitude of unexplored possibilities to model flowthrough of property retirements. The simulation and mathematical analysis of such possibilities would result in a better retirement model. After some deliberation, it was believed the aforementioned P matrix would be a reasonable retirement
model, and that distribution four would adequately represent minor fluctuations in property flowthrough.

The reserve account specifications were pre-determined to be open ended using the straight line method, average life procedure of depreciation. The property account growth was zero for all trials except trial three. The basic mortality law was an Iowa Survivor Curve $S(3)$ with varied parameters of average service life and major trends. The remaining specifications are listed in the discussion or the figures which illustrate the results.

Trial one illustrated the effect varying the average service life had on the behavior of the depreciation reserve. The data which has been listed in Appendix IV.A. is graphically displayed in Figure 3.

The second trial ascertained the effect on depreciation reserve by enhancing the property flowthrough by three, five, and seven percent after year ten. This might be analogous to the effect of unexpected technological obsolescence. The depreciation rate was kept constant. The graphical results are shown in figure 4, and the numerical data is listed in Appendix IV.B.

Trial three demonstrated the effect of property account growth on the depreciation reserve. The numerical data which is found in Appendix IV.C. is displayed in Figure 5.

Figure 4. Depreciation Reserve
Initial Placement: $\$ 10,000$
Mortality Characteristics:
Trends:
$\begin{array}{ll}\odot=0 \% & \triangle=5 \% \\ \square=3 \% & \odot=7 \%\end{array}$

The first three trials were necessary in order to establish confidence in the accuracy of the property account generator. The results of trial one were compared to Winfrey's (19, p. 49) work. Winfrey had established the steady state depreciation reserve factors for the $S(3)$ Iowa Survivor Curve to be $\$ 4,702$ for an initial placement of $\$ 10,000$. The results of trial one compared favorably to this value.

The second trial demonstrated the use of the nondeterministic major trends of property mortality characteristics which would either enhance or delay property flowthrough to retirement. These trends have the same effect as changing the average service life of the mortality characteristics of the property account. The advantage of this feature is that it can generate property accounts in which the sensitivity of life analysis techniques may be tested.

Here it is important to note that when a change of mortality characteristic takes place, by proper manipulation of the elements of the P matrix, all property previously placed in service can be affected by this change. This is a very powerful feature of the stochastic matrix, controlling the property flowthrough to retirement. This particular capability is non-existent in previously constructed property retirement simulators which utilize the Monte Carlo technique to create minor fluctuations in property retirements.

Since major trends may be sinusoid in nature, it is suggested that such a feature be incorporated in the program. As the generator is constructed presently, sinusoid trends may be simulated, but at the expense of excessive preparation of input information. The third trial merely demonstrated the fact that the growth factor feature of the property account generator was working properly.

The fourth trial demonstrated the behavior of the depreciation reserve using varying conditions of mortality characteristics and depreciation rate specifications. The mortality characteristics are changed in the tenth year the account was placed in service. The three property account specifications all are relative to this year of change. The first specification was that the depreciation rate would remain unchanged. The second specification was that the depreciation rate would correctly change in the same year the mortality characteristic changed. The final specification was that the depreciation rate would correctly change, but would be delayed two years from the change of the mortality characteristic. Figure 6 exhibits the depreciation reserve behavior under these conditions. The data is listed in Appendix IV.D.

The fourth trial is the first of many expected deterministic simulations which attempt to find answers to the question of what happens to the depreciation reserve under a va-

riety of complex situations. Even in this trial, it was observed that the depreciation reserve is not self correcting if the correction is delayed when the straight line average life procedure of depreciation is used. How other depreciation methods and procedures affect the depreciation reserve under a set of complex economic conditions is certainly a question which now has a better chance of being answered using the presently constructed property account generator. A specific example of one such question would be; is the remaining life procedure really a self correcting technique as it is presently being applied?

The fifth trial used distribution four to generate minor fluctuations in property flowthrough to retirement. Samples of size thirty of the depreciation reserve were taken for years eleven through twenty from each of four mortality characteristics. The property account specification were held constant. Information from an $S(3)-5$ was collected. Using this mortality dispersion as a base, after the tenth year, the property flowthrough was enhanced by trends of three, five, and seven percent. The information from these three runs was also collected and recorded. Appendix VI summarizes the means and variances of the depreciation reserve distribution as well as listing the pure values of the depreciation reserve.

Recognizing that this is the first time depreciation reserve distributions have been available for analysis, there were questions concerning the type of distribution they were. the equality of their variances, and the significant difference of the means of the respective distributions.

It was hypothesized that the depreciation reserve distributions were normal. Utilizing a chi-squared goodness-offit test described by Ostle (15, p. 126). it was concluded that such a hypothesis was reasonable. The results of the test are listed below.

Hypothesis (+): Depreciation Reserve Distributions are Normal Mortality Characteristic: $S(3)-5$
significance level=0.01

Trends Years	0%	3%	5%	7%
11	+	+	+	+
15	+	+	-	+
20	+	+	-	-

significance level=0.05

Trends Years	0%	3%	5%	7%
11	+	+	+	+
15	+	+	-	+
20	-	+	-	-

Trends	0\%	3\%	5\%	7\%
Years				
11	+	+	+	+
15	+	+	-	+
20	-	-	-	-

Observing the aforementioned table again, it seemed that for the assumptions of normality to hold, as the account time progressed or as the trend percentage increases, the significance level must remain quite low. What model features were causing this, and why, was not immediately apparent. One conjecture is that the longer the trend is in effect, the more pronounced the skewness of the depreciation reserve distribution.

A second hypothesis stated was that the variances of the depreciation reserve distribution each year for the zero, three, five, and seven percent trends were equal. Bartlett's test (15, p. 136) confirmed this hypothesis for years eleven, fifteen, and twenty at significance levels of 0.01,0.05, and 0.10.

It was hypothesised that it would take several years before the magnitude of the depreciation reserve for the three percent trend would become statistically significant from the zero percent trend. Let $r(y \%, z)$ represent the pure depreciation reserve calculation for $a y \%$ trend at age z. Let $\bar{x}(y \%, z)$ represent the mean of the sample of the depreciation reserve for a $y \%$ trend at age z. The first
hypothesis was that $\bar{x}(3 \%, z)<r(0 \%, z)$. Using a t-test as described by ostle (15, p. 133), the following results were calculated using the data from Appendix VI and listed below. Hypothesis (+) : $r(0 \%, z)>\bar{x}(3 \%, z)$ for a $S(3)-5$
$\begin{array}{llll}\text { Year } & 11 & 12 & 13 \text { thru } 20\end{array}$ Significance level

0.01	-	-	+
0.05	-	+	+
0.10	-	+	

The test exhibited significance at all levels quite quickly as time progressed. $\bar{x}(5 \%, z)$ and $\bar{x}(7 \%, z)$ were not tested since they would show significance even more quickly. It is conjectured that for property accounts with longer average service life, a significant difference in means may not be reached as quickly in terms of years. In terms of percent of average service life, it is expected that the analysis would be nearly identical.

There was a casual observation that the $\bar{x}(k \%, z)$ was greater than $\mathrm{r}(\mathrm{k} \%$, z$)$. This seemed to violate a previously stated intuition that the central tendency of the depreciation reserve would be near the pure depreciation value. A t-test was conducted to ascertain if $\bar{x}(k \%, z)$ > $r(k \%, z)$. It was determined that such was the case at a significance level of 0.001 .

This unique situation is not surprising if the P matrix is closely observed.

$$
P=\left|\begin{array}{llllllll}
g(1) & g(2) & g(3) & g(4) & \cdots & g(n-1) & 0 & 0 \\
b & c & 0 & 0 & \cdots & 0 & 0 & 0 \\
a & b & c & 0 & \cdots & 0 & 0 & 0 \\
0 & a & b & c & \cdots & 0 & 0 & 0 \\
- & & & & & & & \cdot \\
\bullet & 0 & 0 & 0 & \ldots & a & b & c
\end{array}\right|
$$

Using the fourth aistribution to describe the fluctuations in property flowthrough, it is observed that in row two, b will be the value 1 , seventy-five percent of the time; the value 0.97, twenty percent of the time; and the value 0.95 , five percent of the time. The average value of b in the second row is less than one. This implies a delay of property flowthrough to retirement. An examination of rows beyond the second row finds the average value of b equal to one. The implication is that there is no delay or enhancement of property flowthrough. With a slight delay in property retirement due to row two of the P matrix, the depreciation reserve in non-deterministic simulations would be higher than expected pure depreciation reserve.

The implications of the previous discussion are quite startling. They suggest that the previous levels of depreciation reserve must be corrected upward only because of normal minor fluctuations in the property flowthrough to retirement. It would be quite interesting to observe what impact various minor fluctuation's distributions have on increasing the depreciation reserve level. The mortality characteristics of the property may also be a factor in determin-
ing the proper correction factor to apply. of course, the above tuo conditions are dependent on the arrangenent and calculations of the elements in the P matrix which form the basic retirement model. Though the aforementioned concepts are not results of an in depth study, there seems to be enough evidence to warrant more research in this area because of the impact it may have on governmental and corporate decisions.

Whether a depreciation reserve observation is significantly different or not from some expected level, it still doesn't answer the question of from which set of wortality characteristics such an observation could have come. In an attempt to shed more light in this area the probabilities of misclassification are calculated from the information supplied by appendix VI.

The probabilities of misclassification are nothing more than determining the percentage chance that an observation was assigned to set A when in reality it belongs to set B. Let $p(0 \% \mid$ 3\%, $x)$ represent the probability of classifying a property account with the 0% trend, given it was the 3% trend which caused that depreciation reserve value. The value x represents the criteria for classification. In this case if the depreciation reserve observed is greater than x, the observation is said to have come from the mortality characteristic with a 0% trend. Conversely, if the depreciation re-
serve observed is less than x, the observation is placed with the mortality characteristics with a 38 trend. It might be more proper to represent the probability of nisclassification as $P(0 \% \mid 3 \%, x, y)$ where Y denotes the time that the 3% trends has been in effect. Since this portion of the chapter is not an in-depth study of the misclassification problem, but only a small illustration of the type of information which may be derived from interpetation of the output supplied by the property account generator, the former $\mathrm{P}(0 \%!3 \%, x)$ will be considered sufficient. From Anderson (2, Chapter 6) the mathematics of the probability of misclassification are developed assuming a normal distribution vith equal variances. The basic structure of this development as applied to the problem at hand is found in Appendix III. The numerical results of the probabilities of misclassification are listed in Appendix VII, and graphically displayed in Figures 7.8.9, and 10. The value x is in terms of standard deviation from $\bar{x}(0 \%, z)$ for all except Figure 10 , where x represents the midpoint between the two means.

The graphs illustrate several interesting concepts. One such concept exhibited is that the closer the criteria is to the mean, the lover the probability of misclassification as the years progress. The converse is also noted that the further avay the classification criteria is from the mean,

Figure 8. Probability of Misclassification

Initial placement: $\$ 10,000$ Mortality Characteristic:
S(3)-5
5\% trend 11-20 years

Criteria: \# of Standard Deviations from $x(0 \%, z)$. ロ $=0.5 \quad \odot=1.5 \quad \nabla=2.5$ $\Delta=1.0 \quad \odot=2.0 \quad \diamond=3.0$

Figure 9. Probability of Misclassification
Initial Placement: $\$ 10,000$ Mortality Characteristics: S(3)-5
7\% trend 11-20 years
\# of Standard Deviations from $x(0 \%, z)$.

the higher the probability of misclassification. The graphs also exhibit that as the trends become more pronounced, the probability of misclassification is reduced. The information projected also gives a guideline to the degree of sensitivity that may be expected from life analysis techniques which detect changes in mortality characteristics. It is also observed that minor changes in mortality characteristics require a much longer time to become apparent than major changes in mortality characteristics. Yet, the detection of major changes of mortality law do take several years before they even become apparent.

The ideas illustrated by the previous discussion have been intuitively obvious to practitioners in the field for many years. It is significant that this is the first time that actual numbers have been associated with these concepts. The aforementioned discussion was based on mortality characteristics which had a five year average service life. What happens to the probabilities of misclassification when property accounts have larger average service lives may only be conjectured at this point. The speculation is that if the horizontal scale remains in years, that the slopes of the respective lines will be less. On the other hand if the horizontal scale is calculated in terms of percent of average service life, the graphs would be expected to remain the same. Depending on how low a practitioner in the field
wished to keep his probability of misclassification, it appears that a significant portion of the life cycle must pass before, at which level a reasonably low probability of misclassification is arrived.

The subject of the probability of misclassification would not be complete unless several other ideas were mentioned. The previous probabilities were calculated for a single observation which was expected to fit in one of two categories. It would seem reasonable that other probabilities could be calculated for a single observation which mignt be placed in one of several categories. Considering that the information is available about previous depreciation reserve values it seems proper to suggest that the probabilities of misclassification may be calculated for a value which is a function of several previous observations.

The presentation of the results and subsequent discussion would be remiss if suggestions to make the present simulator an even more useful tool where not included. The first suggestion would be to make the account growth factor a stochastic value. This would be more representative of the actual accounts observed than a deterministic growth factor which is presently incorporated. Secondly, there should be more than one choice of depreciation methods and procedures available. It also seems appropriate to suggest that the property account be placed on disk. Then separate routines
to calculate the depreciation charges and observe the depreciation reserve behavior as well as test the sensitivity of life analysis techniques could be made.

Thirdly, calculations of the elements of the P matrix should be made more flexible. It must be remembered that the P matrix is a retirement model and that there are many positions of the matrix which have not been utilized. Fourthly, observing that there was considerable amount of calculation required to test and compute the values of the few concepts illustrated it would be a sound idea to build these routines into the program.

These aforementioned suggestions are not major programming tasks. Due to the method of construction utilized, they would be relatively easy to incorporate. These suggestions are to be considered the frosting on the cake. They were left off only because there was a degree of uncertainty as to Whether or not there would even be a cake to frost. The only other programming suggestion which could not be listed under additional features is that there should be more efficient routines and computer languages which could be utilized.

CONCLUSIONS

Though the trial runs were not in depth studies, there were two significant concepts which resulted from the limited information gathered. It was the first time that the probabilities of misclassifying the mortality characteristics had been computed for a single observation of depreciation reserve. It was observed that a substantial portion of the life cycle was required before the probabilities of misclassifying became reasonably low.

The second concept was that the expected value of the depreciation reserve distribution was significantly greater than the pure value of the reserve. previous discussion suggested that the estimated value of the depreciation reserve must be corrected upwards because of random fluctuations in the property flowthrcugh to retirement. It was also conjectured in those previous comments that the shape of the mertality distribution would be a contributing factor to the correction.

The major thrust of the research was first, finding a new technique about which a better property account generator could be built, and second, building and testing such a device. Accordingly, a retirement experience simulator was constructed whose major feature is the use of a stochastic matrix to control the property flowthrough to retirement. After several preliminary trials, a set of five specific
trials was conducted. It was concluded that the property account generator worked satisfactorily. It was judged that the device has the capability to simulate property accounts not unlike those actually experienced by corporations.

This judgement was based on the capabilities built into the retirement simulator. The features are the ability to Change the depreciation rate, the account growth rate, the trend percentage, the major property placements, the average property service life, and the mortality distribution individually or in groups at any desired time period. The capability to create minor fluctuations in property flowthrough is another important ability of the property account generator. Utilizing the stochastic matrix as the basis of the retirement experience simulator provided the means to distribute the effects of the changes in mortality characteristics to previously placed property.

The utilization of a stochastic matrix to control property flowthrough may be considered a third generation method to simulate property retirement experience. The flexibility of the technique places it one step beyond what has been referred to as the deterministic generator and the nondeterministic generator whose major feature was the previously describe Monte Carlo technique. The appropriate control of the elements of the stochastic matrix is what provides this flexibility.

It is expected that the techniques of controlling property flowthrough to retirement, about which the presently constructed retirement experience generator was built, will provide the basis to examine the questions concerning the comparisons, accuracy, and sensitivity of life analysis techniques and the behavior and importance of the depreciation reserve. Jtilizing these techniques, it is also possible to place a property account generator as an integral and contributing subsection of a larger corporate economic model.

1. American Gas Association-Edison Electric Institute. An appraisal of methods for estimating service lives of utility property. American Gas Association-Edison Electric Institute, New York, N.Y: 1942.
2. Anderson, T. $\mathrm{H}_{\text {. }}$ An introduction to multivariate statistical analysis. New York, N.Y., John Wiley $\&$ Sons, Inc. 1958.
3. Clough, Donald J. Concepts in management science. Englewood Cliffs, N.J., Prentice Hall, Inc. 1963.
4. Couch, Frank Van Buskirk, Jr. Classification of type 0 retirement characteristics of industrial property. Unpublished M.S. thesis. Ames. Iowa, Library, Lowa State Oniversity of Science and Technology. 1957.
5. Cowles, Harold Andrews, Jr. Prediction of mortality characteristics of industrial property groups. Unpublished Ph.D. thesis. Ames, Iowa, Library, Iowa State University of Science and Technology. 1957.
6. Cox, D. R. Renewal theory. New York, N. Y., John Wiley and Sons. Inc. 1962.
7. Feller, William. An introduction to probability theory and its applications. New York. N.Y.. John Hiley and Sons, Inc. 1950 .
8. Henderson, Allen James. The Weiball distribution and industrial property mortality experience. Unpublished M.S. thesis. Ames, Iowa, Library, Iowa State University of Science and Technology. 1965.
9. Henderson, Allen James. Actuarial methods for estimating property parameters of industrial property. Unpublished Ph.D. thesis. Ames, Iowa, Library, Iowa State Oniversity of Science and Technology. 1967.
10. Ijiri, Yuji. on the convergence of periodic
reinvestments by an amount equal to depreciation.
Management Science 13: $321-340$. 1967 .
11. Kimball, Bradford F. A system of life tables for physical property based on the truncated normal distribution. Econometrica 15: 342-360. 1947.
12. Lamp, George Emmett, Jr. Dispersion effects in industrial property life analysis. Unpublished Ph.D. thesis. Ames, Iowa, Library, Iowa State University of Science and Technology. 1968.
13. Marston, Anson, Winfrey, Robley, and Hempstead, Jean C. Engineering valuation and depreciation. Ames, Iowa, Iowa State Oniversity Press. 1953.
14. Nichols, Richard Lee. The moment ratio method of analyzing industrial property experience. Unpublished M.S. thesis. Ames, Iowa, Library, Iowa State University of Science and Technology. 1961.
15. Ostle, Bernard. Statistics in research. Ames, Iowa, Iowa State University Press. 1964.
16. Pollock, Richard L. Tax depreciation and the need for the reserve ratio test. Washington D.C.. The Department of the Treasury. 1968.
17. White, Ronald Eugene. The multi variate normal distribution and the simulated plant record method of life analysis. Unpublished M.S. thesis. Ames, Iowa, Library, Iowa State University of Science and Technology. 1968.
18. Winfrey, Robley. Statistical analysis of industrial property retirements. Iowa State University Engineering Research Institute Bulletin 125. 1935.
19. Winfrey, Robley. Depreciation of group properities. Iowa State University Experiment Station Bulletin 155. 1942 .
20. Winfrey, Robley and Kurtz, E.B. Life characteristics of physical property. Iowa State University Engineering Research Institute Bulletin 103. 1931.
21. Zannetos, Zennon S. Statistical attributes of group depreciation. The Accounting Review 37: 713-720. 1962.
22. Zannetos, Zennon S. Markov chain depreciation model and survivor curve depreciation. Metroeconomica 15: 155-166. 1963.

ACKNOWLEDGEMENTS

The author wishes to express his appreciation for the advice, counsel, and encouragement given to him by Dr. Harold A. Cowles. Gratitude is extended to Richard A. Stein for assistance with computer programs and statistical concepts. The author would also like to acknowledge his parents, Mr. and Mrs. Harold M. Hoover, who encouraged him in all endeavors of his educational pursuit. Last but not least a note of appreciation for $m y$ wife, Clara Jeanne, whose patience, help, and understanding made it all possible.

APPENDIX I:

documentation of the computer program

The appendix is divided into four major sections: program listing, flowcharts of the main program and subroutines, description of the main program and subroutines, and a list and brief description of major variables and arrays.

```
Section A: Program Listing
Section B: Flowcharts
Section C: Main Program and Subroutines
Section D: Major Arrays and Variables
```

The computer program consists of one main interlocking program and twenty-one subroutines which perform a well defined set of operations. The main program calls each subroutine in desired order. The subroutine performs the desired calculations and returns the information to the main program.

The documentation of the main program will contain a description of the major objective of each subroutine. The discussion of each subroutine will illustrate important operational details.

Section A: Program Listing

```
    B441HH JOB 'U4105,TIME=9.SIZE=192K',HOOVER
    STEP1 EXEC WATFIV,REGION.GO=(192K,18K),TIME.GO=8
    GO.SYSIN DD *
JOB U4105HOOVR,TIME=480,PAGES=30
        COMMON A(51,7), U(51,7), Y(51,3), D(51,31), WB (3,4),
    CSMRES(10), DELRES(10). SMREN(10), DELREN(10).
    C RESH(11,10), RR(31), ITP(10), DRES(50), RENTOT(51),
    CRM(20,2), SC(400), V(31), DD(31), REN(100,10).
    C DCHRD(50), AD(50), PA(51,51). RENH(11, 10),PLANT(51).
    C RES (100,10)
        COMMON KKKK(80)
        COMMON N,FY,LY,IPA,NTR,IOPA,IOH,NPTS,E
        INTEGER RA,CA
    INTEGER RD,R,C,E,FY,LY,K1,R1,R2, TAPE
        READ (5,55) (KKKK(M),M=1,80)
        FORMET (80I1)
    READ(5,5000) NR
5000 FORMAT(I2)
    TAPE = 10
    REWIND TAPE
    DO 600 I=1,NR
        CALL ZERO
        CALL INPUT(SEED)
    CALL BUG (6)
        DO 686 IROW=1,NTR
        CALL SET1 (FLAG,RD,DIAG1)
    DO 601 II=1.E
        CALL SET2 (RD,ASL,SUCU)
        CALL DMATRX (SUCU,ASL,D,RD,U,SUCUX,ASLX,FLAG,V.TAPE.
    C RR,PA)
    CALL RANDOM(SEED,RAN)
    CALL RANPER(RM, RAN, RPER)
    DO 602 R=1,RD
        CALL SET3 (OASL,RRPER,ASL,DIAG1,RPER,RD,R)
    IF (R-1) 500,501,500
500 CONTINUE
    IF(DIAG1-DIAG2) 501,502,501
501 CONTINUE
    CALL PMATRX(WB,DIAG1)
502 CONTINUE
    DIAG2=DIAG1
        CALL DMULTP(R ,D.DD,WB)
6 0 2 \text { CONTINUE}
    CALL RENWI(D,RD,O,PA,V,A)
```

601 CONTINUE CALL DEPRES (E) IF (IOPA) 99,99,98
98 CONTINUE CALL PAGE1 (I,N,FY,LY,E,IPA) CALL PAGE2 (E) CONTINUE IF (IOH) $10,10,11$
11 CONTINUE CALL HISTO1 (NPTS,IROW) CALL HISTO2 (NPTS.IRON) CONTINUE CONTINUE IF (IOH) 89.89.88 CONTINUE CALL HISAGN (NPTS,NTR,RES,SMRES, DELRES,RESH) CALL HISAGN (NPTS,NTR,REN,SMREN,DELREN,RENH) CALL PAGE1 (I,N,FY,LY,E,IPA) CALL PAGE3
89 CONTINUE
600 CONTINUE
STOP
END

SUBROUTINE MUSIG
COMMON A $(51,7), \quad \mathrm{O}(51,7), Y(51,3), \mathrm{D}(51,31), W B(3,4)$,
CSMRES (10) © DELRES (10). SMREN (10). DELREN (10) .
C RESH(11,10). RR(31). ITP (10). DRES (50). RENTOT (51). $\operatorname{CRM}(20,2), \operatorname{SC}(400), V(31), \operatorname{DD}(31), \operatorname{REN}(100,10)$. C DCHRD (50), $A D(50), \operatorname{PA}(51,51), \operatorname{RENH}(11,10), \operatorname{PLANT}(51)$.
C RES $(100,10)$
COMEON KKKK (80)
COMMON N,FY,LY,IPA,NTR,IORA, IOH,NPTS,E
INTEGER RA,CA
INTEGER RD,R,C,E,FY,LY,K1,R1,R2, TAPE DO $1 K=1$, NPTS
SUM=0
DO $2 \mathrm{~J}=1$, NTR
SUK=SUM+RES (J,K)
2 CONTINOE
ZMEAN=SUM/NTR
RES (NTR $+1, K)=Z M E A N$
SUM=0
DO $3 \mathrm{~J}=1$, NTR
SUM=SUM + (RES (J, K) -ZMEAN) * (RES (J,K) -ZMEAN)
3 CONTINUE
ZVAR=SUM/(NTR-1)
RES (NTR+2,K) = ZVAR

```
            ZNTR=NTR
                RES (NTR+3,K) = SQRT (ZVAR) / SQRT(ZNTR)
1 CONTINUE
RETURN
END
```

 SUBROUTINE INPUT(SEED)
 COMMON A \((51,7)\), \(\mathrm{U}(51,7)\); \(Y(51,3)\), \(\mathrm{D}(51,31)\). WB \((3,4)\),
 CSMRES (10), DELRES(10), SMREN(10), DELREN(10),
 C RESH (11, 10), RR(31). ITP(10), DRES (50), RENTOT (51).
 \(\operatorname{CRM}(20,2), \operatorname{SC}(400), V(31), \operatorname{DD}(31), \operatorname{REN}(100,10)\),
 C \(\operatorname{DCHRD}(50), \operatorname{AD}(50), \operatorname{Pa}(51,51)\). RENH \((11,10), \operatorname{PLANT}(51)\).
 \(C \operatorname{RES}(100,10)\)
 COMMON KKKK (80)
 COMMON N,FY,LY,IPA,NTR,IOPA,IOH,NPTS,E
 INTEGER RD,R,C,E,FY,LY,K1,R1,R2,TAPE,ONE,RA,CA,RRM,
 C CV,CD,RDN,FCA.
 CRY,CY
 C****READ FIRST CARD OF SET-ACCOUNT RANGE
READ (5,5001) FY, LY, IPA,NTR,IOPA,IOH,NPTS, (ITP (I), I=1
C .NPTS)
CALL BUG (1)
SEED =IPA
$E=L Y-F Y+1$
$\mathrm{Y} Y=\mathrm{FY}$
DO $9 \mathrm{R}=1$. E
A $(R, 1)=Y Y$
$U(R, 1)=Y Y$
$Y Y=Y Y+1$
9 CONTINUE
C****READ SECOND CARD OF SET-PLACEMENTS
$\operatorname{READ}(5,5002) \mathrm{N},((\mathrm{Y}(\mathrm{R}, \mathrm{C}), \mathrm{C}=1,2), \mathrm{R}=1, \mathrm{~N})$
CALL BUG(2)
CALL LOAD ($\mathrm{Y}, \mathrm{A}, \mathrm{FY}, \mathrm{E}, \mathrm{O}$)
C****READ THIRD CARD OF SET-SURVIVOR CURVES
$\operatorname{READ}(5,5003) \mathrm{N},((\mathrm{Y}(\mathrm{R}, \mathrm{C}), \mathrm{C}=1,3), R=1, N)$
CALL BUG(3)
CALE CHANGE (2,Y,A,FY,3,E)
C****READ FOURTH CARD OF SET-GROHTH PATTERNS
READ $(5,5004) \mathrm{N},((\mathrm{Y}(\mathrm{R}, \mathrm{C}), \mathrm{C}=1,2), \mathrm{R}=1, \mathrm{~N})$
CALL BJG(4)
CALL CHANGE (1, Y, A, FY,5, E)
C****READ FIFTH CARD OF SET-TREND PATTERNS
$\operatorname{READ}(5,5004) \mathrm{N},((\mathrm{Y}(\mathrm{R}, \mathrm{C}), \mathrm{C}=1,2), \mathrm{R}=1, \mathrm{~N})$
CALL BUG (5)
CALL CHANGE (1, Y, A, FY, 6, E)
C****READ 5.5 CARD OF SET-DEPRECIATION RATE
$\operatorname{READ}(5,5004) \mathrm{N},((\mathrm{Y}(\mathrm{R}, \mathrm{C}), \mathrm{C}=1,2), \mathrm{R}=1, \mathrm{~N})$

```
    CALL CHANGE(1,Y,A,FY,7,E)
C****READ SIXTH CARD OF SET-P (R,C) RANDOMIZATION
    READ(5,5004) N,((RM (R,C),C=1,2),R=1,N)
        CALL BOG (6)
5001 FORMAT( 3(I4,1X),I2,2(1X,I1),1X,11(I2,1X))
5 0 0 2 ~ F O R M A T ~ ( I 2 , 1 X , 1 0 0 ( F 5 . 0 . F 7 . 0 , 2 X ) ) ,
5003 FORMAT (I2,1X,100(F5.0.F3.0.F4.1.2X))
5004 FORMAT(I2,1X,100(F5.0.F5.1))
    BETURN
    END
    SUBROUTINE PAGE1 (I,N,FY,IY,E,IPA)
    COMMON A(51,7), U(51,7), Y(51,3), D(51,31),WB(3,4),
    CSMRES (10), DELRES (10), SMREN(10). DELREN(10).
    C RESH(11,10), RR(31). ITP(10), DRES(50), RENTOT (51).
    CRM(20,2), SC(400), V(31), DD(31), REN(100,10),
    C DCHRD(50), AD(50),PA(51,51), RENH(11, 10),PLANT(51).
    C RES(100,10)
    INTEGER RD,R,C,E,FY,LY,K1,R1,R2,TAPE,ONE,RA,CA,RRM.
    C CV,CD,RDN,FCA,
    CRY,CY
    WRITE (6,6000) IPA,FY,LY
    IA 3=A (1,3)
    IA1=A(1,1)
    WRITE (5,6001) IA1,IA3,(A (1,J),J=4,7)
    DO 803 L=2,E
        IF(A(L-1,7) - A(L,7)) 804,799,804
    799 IF(A(L-1,3) -A (L, 3)) 804,800,804
    800 IF(A (L-1,4) -A (L,4)) 804,801,804
    801 IF(A(L-1,5) -A(L,5)) 804,802,804
    802 IF(A(L-1,6) -A (L,6)) 804,803,804
    804 CONTINUE
    IA 1=A (L, 1)
    IA 3=A (L, 3)
    WRITE (6,6002)IA1,IA3, (A (L,J),J=4,7)
803 CONTINUE
        WRITE (6,6009) (RM (R,2), R=1,N)
        WRITE (6,6010) (RM (R,1),R=1,N)
        RETURN
6000 FORMAT(!1ACCOUNT '.I4,2X.'FROM',I5.' - . .I5.//.8X,
    C 'YEAR',5X,'DISTRIBOTION',5X,'GROWTH',6X,'TREND'
    C .'DEPRECIATION RATE')
6001 FORMAT('0',7X,I4,7X,I2,2X,F4.1,7X,F4.1,'%'.6X,F5.1.1%'
    C .10X,F9.1,0%')
6002 FORMAT (8X,I4,7X,I2,2X,F4.1,7X,F4.1.'%',6X,F5.1,'%',1
    C0X,F9.1,'%')
6009 FORMAT (' './//.' '.10X,'RANDOM DISTRIBUTION'./'' ',
    C 12X,'VARIATION',5X,20F6.1)
```

```
6010 FORMAT
                                    (' ', 12X,'P(VARIATION)', 2X, 20F6.1)
```

 END
 SUBROUTINE DEPRES (E)
 INTEGER E,ONE
 ONE=1
 PLANT (ONE) \(=\mathrm{U}(O N E, 2)\)
 RENTOT (ONE) \(=0(O N E, 7)\)
 \(D C H R D(O N E)=(U(O N E, 2)) *(2 * A(O N E, 7)) / 400\)
 \(A D(O N E)=D C H R D(O N E)\)
 DRES (ONE) = AD (ONE) - RENTOT (ONE)
 DO \(3 \mathrm{~K}=2, \mathrm{E}\)
 PLANT \((K)=\) PLANT \((K-O N E)+U(K, 2)+U(K, 4)\)
 DCHRD \((K)=(P L A N T(K)+\) PLANT \((K-O N E)) *(2 * A(K, 7)) / 400\)
 \(\operatorname{RENTOT}(K)=\operatorname{RENTOT}(K-O N E)+U(K, 7)\)
 \(A D(K)=A D(K-O N E)+D C H R D(K)\)
 \(\operatorname{DRES}(K)=A D(K)-\operatorname{RENTOT}(K)\)
 CONTINUE
 CALL BUG (7)
 RETURN
 END
 SUBROUTINE LOAD (Y,A,FY,E,U)
 INTEGER R.E.RY. C.FY
 DIMENSION Y 51,3\(), A(51,7), U(51,7)\)
 CKY=FY
 DO \(20 \mathrm{R}=1, \mathrm{E}\)
 \(A(R, 1)=C K Y\)
 \(0(R, 1)=C K Y\)
 CKY \(=C K Y+1\)
 20 CONTINUE
$\mathrm{RY}=1$
CKY=Y (RY.1)
DO $21 \mathrm{R}=1$, E
IF (CKY-A (R, 1)) 23, 22, 23
22 CONTINUE
$A(R, 2)=Y(R Y, 2)$
$\mathrm{U}(\mathrm{R}, 2)=\mathrm{Y}(\mathrm{RY}, 2)$
$R Y=R Y+1$
CKY=Y (RY, 1)
GO TO 21
23 CONTINDE
$A(R, 2)=0$
U ($\mathrm{R}, 2$) $=0$
21 CONTINUE
DO $18 R=1.51$
DO $18 \mathrm{C}=1.3$
$18 Y(R, C)=0$
RETJRN
END

SUBROUTINE CHANGE(N,Y,A,Fy,FCA,E)
INTEGER FCA, E,RY,CA,CY,R,C,RA,FY
DIMENSION A $(51,7), Y(51,3)$
CKY=FY
RY=1
$C A=F C A-1$
$C Y=1$
DO $12 \mathrm{I}=1$, N
$C A=C A+1$
$\mathrm{CY}=\mathrm{CY}+1$
$\mathrm{A}(1, C A)=Y(R Y, C Y)$
12 CONTINUE
DO $13 \mathrm{RA}=2, \mathrm{E}$
$C A=F C A-1$
CKY=CKY+1
$C Y=1$
IF (Y (RY+1,1)-CKY) 14, 15,14
15 CONTINUE
$R Y=R Y+1$
DO $16 \mathrm{I}=1$, N
$C A=C A+1$
$\mathrm{CY}=\mathrm{CY}+1$
$A(R A, C A)=Y(R Y, C Y)$
16 CONTINUE
GO TO 13
14 DO 17 I=1.N
$C A=C A+1$
$\mathrm{CY}=\mathrm{CY}+1$
$A(R A, C A)=Y(R Y, C Y)$
17 CONTINUE
13 CONTINUE
DO $18 \mathrm{R}=1.51$
DO $18 \mathrm{C}=1.3$
$18 \mathrm{Y}(\mathrm{R}, \mathrm{C})=0$
RETURN
END

SUBROUTINE ZERO
COMMON A $(51,7), \quad 0(51,7), Y(51,3), D(51,31)$, WB $(3,4)$.
CSMRES (10), DELRES (10), SMREN(10), DELREN(10).
C RESH (11, 10), RR(31), ItP(10), DRES (50), RENTOT (51). $\operatorname{CRM}(20,2), \operatorname{SC}(400), V(31), \operatorname{DD}(31), \operatorname{REN}(100,10)$,
C $\operatorname{DCHRD}(50), ~ A D(50), \operatorname{PA}(51,51), \operatorname{REN}(11,10), \operatorname{PLANT}(51)$.
$C \operatorname{RES}(100,10)$
INTEGER RD,R,C,E,FY,LY,K1,R1,R2,TAPE,ONE,RA,CA,RRM, C CV,CD,RDN, ECA.
CRY,CY
DO $1 \mathrm{R}=1,51$
DO $2 \mathrm{C}=1.7$
$2 \mathrm{~A}(\mathrm{R}, \mathrm{C})=0$
DO $3 \mathrm{C}=1.7$
$3 \mathrm{U}(\mathrm{R}, \mathrm{C})=0$
DO $4 \mathrm{C}=1.3$
$4 \mathrm{Y}(\mathrm{R}, \mathrm{C})=0$
DO $5 \mathrm{C}=1.31$
$R R(C)=0$
$V(C)=0$
$D D(C)=0$
$5 \mathrm{D}(\mathrm{R}, \mathrm{C})=0$
DO $6 \mathrm{C}=1,51$
$6 \mathrm{PA}(\mathrm{R}, \mathrm{C})=0$
1 CONTINUE
DO $7 \mathrm{R}=1,20$
DO $7 \mathrm{C}=1,2$
$7 \mathrm{RM}(\mathrm{R}, \mathrm{C})=0$
DO $334 \mathrm{R}=1,3$
DO $334 \mathrm{C}=1.4$
$W B(R, C)=0$
DO $331 \mathrm{C}=1,10$
$\operatorname{ITP}(\mathrm{C})=0$
$\operatorname{SMRES}(\mathrm{C}) \quad=0$
DELRES (C) $=0$
$\operatorname{SMREN}(\mathrm{C}) \quad=0$
DELREN (C) $=0$
DO $332 R=1.11$
$\operatorname{RENH}(\mathrm{R}, \mathrm{C})=0$
RESH (R,C) $=0$
CONTINUE
DO $333 \mathrm{~J}=1,100$
$\operatorname{REN}(\mathrm{J}, \mathrm{C}) \quad=0$
$\operatorname{RES}(\mathrm{J}, \mathrm{C}) \quad=0$
CONTINOE
CONTINUE
DO $335 \mathrm{R}=1,50$
$\operatorname{DRES}(R)=0$
RENTOT $(R)=0$
DCHRD (R) $=0$
$A D(R)=0$
335
CONTINUE
RETURN
END

```
            SUBROUTINE SET1 (FLAG,RD,DIAG1)
            COMMON A (51,7), U(51,7), Y(51,3), D(51,31), WB(3,4),
        CSMRES(10), DELRES(10), SMREN(10), DELREN(10),
        C RESH(11, 10), RR(31), ITP(10), DRES (50), RENTOT (51),
        CRM(20,2), SC (400), \nabla(31), DD(31), REN(100,10).
        C DCHRD(50), AD(50),PA(51,51). RENH(11,10).PLANT(51).
        C RES(100.10)
            INTEGER RD
        RD=0
        U(1,5)=U(1,2)
        PA (1, 1) = D (1, 5)
        FLAG=0
        DIAG1=1000
        RETURN
        END
            SUBROUTINE DMATRX{SUCU,ASL,D,RD,U,SUCUX,ASLX,FLAG,
        CV,TAPE,RR,PA)
        DIMENSION RR(31),0(51,7),V(21),D(51,31),PA(51,51).
        CSC (400)
        IF(FLAG) 31,30,31
        31 CONTINUE
        IF (ASL-ASLX) 30, 32,30
    32 Contintue
        IF (SUCU-SUCUX) 30,33,30
    30 CONTINUE
        FLAG=1
        IF(SDCU-1) 34.35.34
    34 R=SUCU-1
    DO 36 I=1,K
C****READ DUMMY FOR POSITIONING
            READ(TAPE) (DUMMY,J=1,400)
                CONTINUE
    36 CONTINUE
C****READ IOWA SURVIVOR CURVE
    READ(TAPE) (SC(IC).IC=1,400)
    REWIND TAPE
        DO 157 I=ONE,31
        V (I) =0
        RR(I)=0
157 CONTINUE
    Q=0.5
    C=1
    Q1=SC(C)
    OAGE=0
    CV=0
    p=0.01
```

```
    38 CONTINUE
        \(Q D=0\)
    39 CONTINUE
        \(A G E=P * A S L\)
        IF (AGE-Q) 40,41,41
    40 CONTINUE
    \(C=C+1\)
    Q2 \(=5 C\) (C)
    \(Q D=Q D+Q 1-Q 2\)
    \(\mathrm{P}=\mathrm{P}+0.01\)
    Q1=Q2
    OAGE=AGE
    GO TO 39
    41 CONTINUE
    \(\mathrm{PC}=(\mathrm{Q}-\mathrm{OAGE}) /(\mathrm{AGE}-O A G E)\)
    \(Q 2=S C(C+1)\)
    \(Q P=(Q 1-Q 2) * P C\)
    \(C V=C V+1\)
    \(V(C V)=Q D+Q P\)
    Q1=Q1-QP
    \(Q=Q+1\)
    IF (Q1) 43, 43, 38
43 CONTINUE
    SUCUX=SUCU
    ASLX=ASL
        \(Z=O N E-V\) (ONE)
        DO \(156 \mathrm{I}=0 \mathrm{NE}, 30\)
        \(R R(I)=V(I+O N E) / Z\)
156 CONTINUE
    33 CONTINUE
        IF(RD-ONE) \(158,158,159\)
158 CONTINUE
        \(\mathrm{U}(\) ONE, 5\()=\mathrm{U}(O N E, 2)\)
        \(\mathrm{U}(\mathrm{ONE}, 3)=0\)
        \(\mathrm{U}(O N E, 4)=0\)
        \(\mathrm{U}(\mathrm{ONE}, 6)=\mathrm{U}(\mathrm{ONE}, 5) * V(O N E)\)
        \(\mathrm{U}(\mathrm{ONE}, 7)=\mathrm{U}(\mathrm{ONE}, 6)\)
        PA (ONE,ONE) \(=\mathrm{U}(O N E, 5)\)
159 CONTINUE
        DO \(160 \mathrm{I}=\mathrm{ONE}, 30\)
        \(D(R D, I+O N E)=R R(I) * T(R D, 5)\)
            CONTINUE
        RETURN
        END
    SUBROUTINE RANDOM (SEED, RAN)
    X=SQRT (SEED)
    \(X X=10 * X\)
```

$I X=X X$
$D X=X X-I X$
SEED=10000*DX
IF (SEED-1)41,41,42
41 CONTINUE
SEED=SEED+3.356
42 CONTINUE
$\mathrm{XX}=1000$ * X
$N X=X X$
RAN $=X X-N X$
RETURN
END

SUBROUTINE RANPER(RM,RAN,RPER)
DIMENSION RM $(20,2)$
INTEGER RRM
RRM=0
PS $=0$
60 CONTINUE
RRM=RRM+1
CALL BUG (6)
PS = PS + RM (RRM, 1) /1000
IF (PS-RAN) $60,61,61$
61 CONTINUE
$R P E R=R M(R R M, 2) / 100$
RETURN
END

SUBROUTINE SET2 (RD,ASL, SUCU)
COMMON A $(51,7), U(51,7), Y(51,3), D(51,31), W B(3,4)$, CSMRES(10), DELRES(10), SMREN (10), DELREN(10), C RESH $(11,10), \operatorname{RR}(31) . \operatorname{ITP}(10), \operatorname{DRES}(50), \operatorname{RENTOT}(51)$. CRM $(20,2), S C(400), V(31), \operatorname{DD}(31), \operatorname{REN}(100,10)$. $C \operatorname{DCHRD}(50), ~ A D(50), ~ P A(51,51), ~ R E N H(11,10), P L A N T(51)$,
C RES $(100,10)$
INTEGER RD
$R D=R D+1$
ASL=A (RD, 4)
$S U C U=A(R D, 3)$
RETURN
END

SUBROUTINE SET3 (OASI,RRPER,ASL, DIAG1, RPER, RD, R)
COMMON $A(51,7), ~ U(51,7), Y(51,3), D(51,31), W B(3,4)$,
CSMRES (10) , DELRES (10). SMREN (10). DELREN (10) .
C RESH (11, 10), RR(31). ITP(10). $\operatorname{DRES}(50), \operatorname{RENTOT}(51)$.

```
    CRM(20,2), SC(400), V(31), DD(31), REN(100,10),
    C DCHRD(50), AD(50), PA(51,51), RENH(11,10),PLANT (51)
    C RES (100,10)
    INTEGER RD,R
    OASL=A (R.4)
    RRPER=(OASL-ASL)/ASL
    DIAG1=RPER+RRPER+A(RD,6)/100
        RETURN
        END
    SUBROUTINE PMATRX(WB,DIAG1)
    DIMENSION WB(3,4)
    IF(DIAG1) 71,73,74
        CONTINUE
        A=-DI AGG
        B=1-A
        DO 72 I=1,3
        WB(I,I) =B
        WB(I,I+1)=A
        CONTINUE
        WB (2, 1)=0
        WB(3,2)=0
        GO TO 78
74 CONTINUE
    A=DIAG1
    B=1-DIAG1
    DO 75 I=1,3
    WB(I,I+1)=0
        CONTINUE
    WB(1, 1)=1
    DO 76 I=1,2
    WB(I+1,I)=A
    WB(I+1,I+1)=B
    CONTINUE
    GO TO 78
        CONTINUE
    DO 77 I=1.3
    WB(I,I)=1
    WB(I,I+1)=0
        CONTINUE
        WB (2,1)=0
        WB(3,2)=0
        CONTINUE
        RETURN
        END
```

 SUBROUTINE DMULTP(RD,D,DD,WB)
    ```
    DIMENSION D(51,31),DD(31), HB(3,4)
    INTEGER RD
    DD(1)=WB(1, 1)*D(RD, 2) +WB (2, 1)*D (RD, 3)
    DO 50 I=2,29
    DD(I) = WB(1,2)*D(RD,I) + WB(2,2)*D(RD,I+1) +
c WB (3,2)*D(RD,I+2)
            CONTINUE
    DD (30) =WB (2, 3)*D (RD, 30) +WB (3, 3) *D (RD, 31)
    DD(31) =WB(3,4) *D (RD, 31)
    DO 51 I= 1,31
    D(RD,I)=DD(I)
    DD(I) =0
    CONTINUE
    RETURN
    END
```

 SUBROUTINE RENWL (D,RD,U,PA,V,A)
 DIMENSION \(D(51,31), U(51,7), P A(51,51), V(31), A(51,5)\)
 INTEGER RD, RDN, ONE
 ONE=1
 RDN \(=O N E+R D\)
 \(S M=0\)
 \(S M M=0\)
 DO 2 I=ONE, RD
 \(S M=D(I, O N E)+S M\)
 SMM \(=\mathrm{U}\left(\mathrm{I}_{\mathbf{2}} 2\right)+S M M+\mathrm{U}(\mathrm{I}, 4)\)
 CONTINUE
 \(\mathrm{U}(\) RDN, 3\()=S M\)
 U(RDN,4) SMM*A (RD,5)/100
 \(0(\) RDN , 5) \(=U(R D N, 2)+U(R D N, 3)+U(R D N, 4)\)
 \(\mathrm{U}(\mathrm{RDN}, 6)=\mathrm{V}(\mathrm{ONE}) * \mathrm{D}(\mathrm{RDN}, 5)\)
 \(U(R D N, 7)=U(R D N, 3)+U(R D N, 6)\)
 PA (RDN, RDN) \(=U(R D N, 5)\)
 DO 3 I=ONE,RD
 \(P A(I, R D N)=P A(I, R D)-D(I, 1)\)
 CONTINUE
 RETORN
 END
 SUBROUTINE PAGE2 (E)
 COMMON A \((51,7)\), \(U(51,7), Y(51,3), D(51,31), \mathrm{MB}(3,4)\),
 CSMRES (10), DELRES (10). SMREN(10). DELREN(10),
C RESH (11, 10), RR(31), ITP(10), DRES (50), RENTOT (51),
CRM $(20,2), \operatorname{SC}(400), \nabla(31), \operatorname{DD}(31), \operatorname{REN}(100,10)$,
C DCHRD (50), AD (50), PA $(51,51), \operatorname{RENH}(11,10), \operatorname{PLANT}(51)$,
C $\operatorname{RES}(100,10)$
INTEGER RD,R,C,E,FY,LY,K1,R1,R2,TAPE,ONE,RA,CA,RRM,

```
    C CV,CD,RDN,FCA,
    CRY,CY
    K=1
        CONTINUE
    IZP=17*K
    R1=IZP-16
    IF(E-IZE)810,810,811
        CONTINUE
        R2=E- (K-1)*17 +R 1-1
        CALL PRNNT(R1,R2,E)
        RETURN
        CONTINUE
        R2=IZP
        CALL PRNNT(R1,R2,E)
        K=K+1
        GO TO 812
        END
        SUBROUTINE PRNNT(R1,R2,E)
    COMMON A(51,7), U(51,7), Y(51, 3), D(51,31),WB(3,4),
    CSMRES(10), DELRES(10), SMREN(10). DELREN(10).
    C RESH(11.,10), RR(31). ITP(10), DRES(50). RENTOT (51).
    CRM(20,2), SC (400),V(31), DD(31). REN(100,10).
    C DCHRD(50), AD (50), PA (51,51), RENH(11,10), PLANT (51).
    C RES (100, 10)
        INTEGER R1,R2,E,R,C
    WRITE (6,6003) (U (K 1, 1), K 1=R1,R2)
    WRITE (6,6004) (U (K1, 2),K1=R1,R2)
    WRITE (6,6005) (U (K1, 3),K1=R1,R2)
    WRITE (6,6006) (U (K1,4),K1=R1,R2)
    WRITE (6,6007) (U (K1,5),K1=R1,R2)
        WRITE(6,6009) (U(K1,6),K1=R7,R2)
        WRITE (6,6010) (U (K1,7),K1=R1,R2)
        WRITE(6,6011) ( PLANT (K1), K1=R1,R2)
        WRITE (6,6012) ( DCHRD(K1) ,K1 = R1,R2)
        WRITE(6,6013) ( AD (K1); K1 = R1,R2)
        WRITE(6,6014) (RENTOT(K1), R1 = R1,R2)
        WRITE (6,6015) (DRES (K1),K1=R1. R2)
    DO 807 C=1,E
        IK=U (C, 1)
    WRITE(6,6008)IK , (PA (R,C),R=R1,R2)
    807 CONTINUE
6003 FORMAT('1YEAR'.5X.17F7.0./.' PLACEMENT')
6004 EORMAT(' INITIAL', 1X,17(F7.0))
6005 FORMAT(! RENEWAL', 1X,17(F7.0 ))
6006 FORMAT('GROWTH', 2X,17(F7.0))
6007 FORMAT(' INPUT',3X,17(F7.0))
6008 FORMAT(I5,5X, 17(F7.0 ))
```

```
6009 FORMAT(' ADJUST'.2X,17(F7.0))
6010 FORMAT(' RETIRE'.2X,17(F7.0)./.' YEAR END')
6011 FORMAT(' PLANT '.17(F7.0))
6012 FORMAT(' DCHRD 1.17(F7.0))
6013 FORMAT(' AD '.17(F7.0))
6014 FORMAT(' RENTOT '.17(F7.0))
6015 FORMAT(' DRES 1,17(F7.0))
RETURN
END
```

SUBROUTINE HISTOI (NPTS,IROW)
COMMON A $(51,7), U(51,7), Y(51,3), D(51,31)$, WB $(3,4)$,
CSMRES (10), DELRES(10), SMREN(10), DELREN(10),
C RESH (11, 10), RR(31). ITP(10), DRES (50), RENTOT (51).
$\operatorname{CRM}(20,2), \operatorname{SC}(400), V(31), \operatorname{DD}(31), \operatorname{REN}(100,10)$,
C DCHRD (50), $\operatorname{AD}(50), \operatorname{PA}(51,51), \operatorname{REN}(11,10), \operatorname{PLANT}(51)$.
C RES $(100,10)$
DO $3 \mathrm{~K}=1$, NPTS
IC $=\operatorname{ITP}(K)$
REN (IROW, K) $=\mathrm{U}(\mathrm{IC}, 7$)
3 CONTINOE
RETURN
END
SUBROUTINE HISTO2 (NPTS,IROW)
COMMON A $(51,7), \mathrm{U}(51,7), \mathrm{Y}(51,3), \mathrm{D}(51,31)$, WB $(3,4)$,
CSMRES (10), DELRES(10), SMREN(10), DELREN(10).
$C \operatorname{RESH}(11,10), \operatorname{RR}(31), \operatorname{ITP}(10), \operatorname{DRES}(50), \operatorname{RENTOT}(51)$,
CRM $(20,2), \operatorname{SC}(400), V(31), \operatorname{DD}(31), \operatorname{REN}(100,10)$.
$C \operatorname{DCHRD}(50), \operatorname{AD}(50), \operatorname{PA}(51,51), \operatorname{RENH}(11,10), \operatorname{PLANT}(51)$,
$C \operatorname{RES}(100.10)$
DO $3 \mathrm{~K}=1$ 1.NPTS
IC= ITP (K)
RES(IROW,K) $=$ DRES (IC)
3 CONTINUE
RETURN
END
SUBROUTINE HISAGN (NPTS,NTR,DI,SM, DELTA, HI)
DIMENSION DI(100.10), SM(10). DELTA (10), HI (11. 10)
INTEGER ONE
ONE=1
DO $8 \mathrm{~K}=\mathrm{ONE}, \mathrm{NPTS}$
$S M(K)=D I(O N E, K)$
$B G=D I(O N E, K)$
DO $4 \mathrm{~J}=\mathrm{ONE}, \mathrm{NTR}$
IF (SM(K) - DI(J,K)) 6,6,5
CONTINUE
$S M(K)=D I(J, K)$
CONTINUE
IF (BG-DT(J,K)) 7,4,4
CONTINUE
$B G=D I(J, K)$
CONTINUE
DELTA $(K)=(B G-S M(K)+1) / 11$
$\mathrm{PL}=\mathrm{SM}(\mathrm{K})-\mathrm{ONE}$
$\mathrm{PH}=\mathrm{SM}(\mathrm{K})+\mathrm{DELTA}(\mathrm{K})$
DO $8 \mathrm{JJ}=\mathrm{ONE}, 11$
HI (JJ,K) $=0$
DO $11 \mathrm{~J}=\mathrm{ONE,NTR}$
IF (PL - DI (J.K)) 10.11.11
CONTINOE
IF (DI (J,K) - PH) 12,12,11
CONTINUE
$\mathrm{HI}(\mathrm{JJ}, \mathrm{K})=\mathrm{HI}(\mathrm{JJ}, \mathrm{K})+\mathrm{ONE}$
CONTINUE
$\mathrm{PL}=\mathrm{PH}$
$\mathrm{PH}=\mathrm{PH}+\mathrm{DELTA}(\mathrm{K})$
CONTINUE
DO $13 \mathrm{K=ONE,NPTS}$
DO $13 \mathrm{JJ}=$ ONE, 11
HI (JJ,K) $=$ HI (JJ,K)/NTR
SUBROUTINE BUG (K)
COMMON A $(51,7), U(51,7), Y(51,3), D(51,31), W B(3,4)$,
CSMRES (10), DELRES (10), SMREN(10), DELREN(10),
C RESH (11, 10), RR(31), ITP(10), DRES (50), RENTOT (51),
$\operatorname{CRM}(20,2), S C(400), V(31), \operatorname{DD}(31), \operatorname{REN}(100,10)$,
C $\operatorname{DCHRD}(50), \operatorname{AD}(50), \operatorname{PA}(51,51), \operatorname{RENH}(11,10), \operatorname{PLANT}(51)$.
C $\operatorname{RES}(100,10)$
COMMON KKKK (80)
COMMON N,FY,LY,IPA,NTR,IOPA,IOH,NPTS,E
INTEGER FY, LY, E,R,C
IF (KKKK (K)) 50,50,51
RETURN
Continue
GO TO (1, 2, 3, 4, 5,6,7,8,9),K
CONTINUE
WRITE (6, 402) K, FY, LI, IPA, NTR,IOPA,IOR,NPTS, (ITP (I) , I=1
C.NPTS)
RETURN

CONTINUE
WRITE $(6,81) K, N,((Y(R, C), C=1,2), R=1, N)$ RETURN
CONTINUE
WRITE $(6,81) K, N,((Y(R, C), C=1,3), R=1, N)$ RETURN
CONTINUE
WRITE $(6,81) K, N,((Y(R, C), C=1,2), R=1, N)$ RETURN CONTINUE
WRITE $(6,81) \mathrm{K}, \mathrm{N},((Y(R, C), C=1,2), R=1, N)$ RETURN
CONTINUE
WRITE $(6,81) K, N,((R M(R, C), C=1,2), R=1, N)$
RETURN
CONTINUE
WRITE (6,82) (PLANT (J), J=1,5). (DCHRD(J), J=1,5) ,
C (RENTOT (J), J=1
$C, 5),(\operatorname{AD}(J), J=1,5),(\operatorname{DRES}(J), J=1,5)$
RETURN
CONTINUE
RETURN
CONTINUE
RETURN
FORMAT (' CARD', I1.I4,10F10.1)
ORMAT(' CARD',I1, 2X, 3I5, 14I3)
FORMAT (' PLANT . 5 F10.1./.' DCHRD . 5 F10.1./.'
CRENTOT: 5F10.1./.
$C^{\prime} A D \quad 1.5 F 10.1,1,0$ DRES 1.5F10.1)
END

SUBROUTINE PAGE3
DIMENSION RGNRES (12,10), RGNREN (12,10) , YEAR(10)
COMMON A $(51,7), U(51,7), Y(51,3), D(51,31), W B(3,4)$,
CSMRES (10), DELRES (10). SMREN (10). DELREN (10) .
C RESH(11, 10). RR(31). ITP (10). DRES(50). RENTOT (51).
CRM $(20,2), S C(400), V(31), \operatorname{DD}(31), \operatorname{BEN}(100,10)$.
C $\operatorname{DCHRD}(50), \operatorname{AD}(50), \operatorname{PA}(51,51), \operatorname{RENH}(11,10), \operatorname{RLANT}(51)$.
C $\operatorname{RES}(100,10)$
COMMON KKKK (80)
COMMON N,FY,LY,IPA,NTR,IOPA,IOH,NPTS,E
INTEGER RA,CA
INTEGER RD,R,C,E,FY,LY,K1,R1,R2, TAPE
INTEGER ONE
ONE = 1
DO $3 \mathrm{~K}=\mathrm{ONE}, \mathrm{NPTS}$
DO $3 \mathrm{~J}=1,12$
$\operatorname{RGNRES}(J, K)=\operatorname{SMRES}(K)+(J-1) * \operatorname{LELRES}(K)$

```
    RGNREN(J,K) = SMREN(K) + (J-1)*DELREN (K)
```

 CONTINUE
 DO 4 K= ONE,NPTS
 YEAR \((K)=\operatorname{ITP}(K)-O N E+F Y\)
 CONTINUE
 DO \(5 \mathrm{~K}=\mathrm{ONE,NPTS}\)
 WRITE \((6,22)\) YEAR (K). (RGNRES (J, K), J=1,11),
 C(RGNRES \((J, K), J=2,12\)
 C) , (\(\operatorname{RESH}(J, K), J=1,11)\)
 WRITE \((6,23)\) (\(\operatorname{RGNREN}(J, K), J=1,11),(\operatorname{RGNREN}(J, K), J=2,12\)
 C) \(\cdot(\operatorname{RENH}(\mathrm{J}, \mathrm{K}) \quad, \mathrm{J}=1,11)\)
 CONTINUE
 WRITE \((6,40)\)
 WRITE \((6,41)\)
 WRITE \((6,42)\) (ITP (K), K=1,NPTS)
 DO \(44 \mathrm{~J}=1\), NTR
 WRITE (6,43) (RES (J,K),K=1,NPTS)
 CONTINUE
 CALL MUSIG
 WRITE \((6,45)\) (RES (NTR+1,K) , K=1,NPTS)
 WRITE \((6,46)\) (RES (NTP+2,K) , K=1,NPTS)
 WRITE 6,47) (RES (NTR+3,K) , K=1,NPTS)
 FORMAT('1')
 FORMAT(' DEPRECIATION RESERVE')
 FORMAT(' YEAR', 20I9)
 FORMAT (' . . 4X. 20F9.2)
 FORMAT (' STDP', 20F9.2)
 FORMAT(' VARS', 20F9.2)
 FORMAT (' MEAN', 20F9.2)
 FORMAT(' '///.' TEST YEAR '.F6.0./.'
 C DEPRECIATION RESERVE',//
 C' RANGE ', 11F9.2./.7X,11F9.2./.' \% ',11F9.2)
 C/.0 \% 'ififg
 FORMAT('ORENEWALS'./' RANGE '.11F9.2./.7X.11F9.2.
 C. 2)
 RETURN
 END
 ENTRY
2
$196119805573300110-11$-12-13-14-15-16-17-18-19-20
01 1961. 10000.
01 1961. 8. 5.
01 1961. 0.
02 1961. 0. 1970. 5.
01 1961. 20.
5. 50. -5. 200. -3. 500. 0. 200. 3. 50. 5.
1961 19807573 3001 10-11-12-13-14-15-16-17-18-19-20

```
01 1961. 10000.
01 1961. 8. 5.
01 1961. 0.
02 1961. 0. 1970. 7.
01 1961. 20.
5 50. -5. 200. -3. 500. 0. 200. 3. 50. 5.
STOP GO.FT10F001 DD
UNIT=TAPE,DISP=(OLD,KEEP),LABEL=(,NL,,IN).
                                    DCB=(TRTCH=C,DEN=2),VOLUME=SER=TP0541
```


Section B: Flowcharts

Figure 11. Main Program
Figure 12. LOAD Subroutine
Figure 13. CHange Subroutine
Figure 14. INPUT Subroutine
Figure 15. SET Subroutines
Figure 16. DMATRX Subroutine
Figure 17. RANDOM Subroutine
Figure 18. RANPER Subroutine
Figure 19. PMATRX Subroutine
Figure 20. DMULTP Subroutine
Figure 21. RENWL Subroutine
Figure 22. PAGE Subroutines
Figure 23. PRNNT Subroutine
Figure 24. HISTO Subroutines
Figure 25. DERRES Subroutine
Figure 26. HISAGN Subroutine
Figure 27. BUG Subroutine
Figure 28. MUSIG Subroutine

Figure 11. Main Program

Figure 11. (continued)

Figure 11. (continued)

Figure 11. (continued)

Figure 12. LOAD Subroutine

Figure 12. (continued)

Figure 13. Change Subroutine

Figure 13. (continued)

Figure 14. INPUT Subroutine

Figure 14. (continued)

Figure 15. SET Subroutines

Figure 15. (continued)

Figure 16. DMATRX Subroutine

Figure 16. (continued)

Figure 16. (continued)

Figure 16. (continued)

Figure 17. RANDOM Subroutine

Figure 18. RANPER Subroutine

Figure 19. PMATRX Subroutine

Figure 20. DMULTP Subroutine

Figure 21. RENWL Subroutine

Figure 21. (continued)

Figure 22. PAGE Subroutines

Figure 22. (continued)

Figure 22. (continued)

Figure 22. (continued)

Figure 22. (continued)

Figure 23. PRNNT Subroutine

Figure 24. HISTO Subroutines

Figure 24. (continued)

Figure 25. DEPRES Subroutine

Figure 26. HISAGN Subroutine

Figure 27. BUG Subroutine

Figure 28. MUSIG Subroutine

Figure 28. (coneinued)

Section C: Main Program and Subroutines

MAIN Program
The first row data cards read by the program will respectively denote the information the debug subroutine BUG vill supply, and the number of accounts $N R$ which yill be simulated.

The first loop cycles NB number of times, after which the $2 E R O$ subroutine is called to set all arrays to zero. Next, the INPUT subroutine is called, which reads the data from six cards whose information specifies the parameters of the first of $N R$ accounts. In order to utilize the account specifications efficiently the CHANGE and LOAD subroutines place the information on a yearly basis in the A array.

The second loap cycles NTR times where NTR equals the number of simulations of the account which have been specified. The SET1 subroutine immediately following the beginning of the second loop initializes parameters. The SET2 and SET 3 subroutines accomplish the same function though they immediately follow the third and fourth loops respectively.

The third loop cycles E times where E is a number of Years which the account will run. Following SET2 subroutine the DMATRX subroutine distributes the property in array D to be placed in service thet year according to the property life distribution. Each year the account is in operation is
represented by one vector of the two dimensional array D array. At this point the random numbers relating to the variation in property flowthrough are generated for the p array. The randoll number is generated by the RANDOM subroutine and the percentage variation is calculated by the RaNPER subroutine.

The fourth loop cycles RD nuaber of times where RD is the year of operation being worked on in the third loop. If it is the first time through for the routine, $R D=1$ or the percentage variation in flowthrough is unequal to the previous year, dragi unequal diag2, then the phatra subroutine is called. The phatrx subroutine sets up the diagonal elements of the P array by placing them in the more compact yet equivalent $W B$ array. In either case the DMOLTP subroutine is next and it multiplies the P arrap times the D array to make a new D arrap which represents the impact of one year passing on RD accounts.

Following the exit from the fourth loop the RENWL sibroutine places the number of placements, renewals, growth, renewal adjustments, and retirement information in the u matrix. It also updates the property account array Pa.

After the third loop is completed the DEPRES subroutine calculates depreciation charges, accrued depreciation. accrued renewals, plant in service, and depreciation reserve. If IOPA is one, the computer calls PAGE1 subroutine which
prints a summary of the account specifications. The PAGE2 subroutine is next called and in conjunction with the PRNRT subroutine prints out the property account array Pa, the U array, and the information calculdted in the DEPRES subroutine. If IOPA is zero, this is one run of NTR runs, and IOH should be set to one. When $I O H$ equals one, the depreciation reserve and renewal information at various points in time are collected for subsequent arrangement in a histogram. Then HISTO1 and HISTO2 are called for collecting this information about the depreciation reserve and renewals respectively.

The end of the second loop corpletes the number of trials selected from one account. Immediately if IOH equals one, the information collected by the HISTO1 and HISTO2 subroutines is arranged in a histogram by the HISAGN subroutine. A summary of account specification is printed by calling the PAGE1 subroutine. The histograms of renewals and depreciation reserve are printed by calling the PAGE3 subroutine. The end of loop one signals that all accounts have been processed by stopping ihe program.

INPDT Subroutine

The property account is described by six cards hereafter referred to as the set. Card one of the set contains seven items of information. Item number one is the number of years the account will run. Variable name $F Y$ is the first year.
and Ly is the last year. The second item of information is the property account number denoted by IPA. Item number three is the number of trials to be run which is listed under the variable name NTB. The fourth item tells whether the property account shall be printed. If IOPA is one, the account will be printed. If IOPA is zero the account will not be printed. If $I O H$ is one, the histogram for renewals and depreciation reserve of an account is printed, whereas if $I O H$ is zero, no histograms will be printed. The sixth itea of information is the number of observation points used in the property account. This is represented as variable NTR which must be less than ten. The last bit of information is the specific years from the first year which are to be observed. These are put in the ITP array. If, for example, FI equals 1961 and ITP(k) equals 5 then the k observation is in 1965.

Card two of the set denotes the times at which major property placements occur. The variable N (N less than 50) represents the number of placements, and the year $Y(2, k)$ that amount which was placed in service where $k=1,2, \ldots, N$.

Card three of the set describes the life distribution of the property which is placed in serivce. The number of Changes in the property distribution is N. The year that the property is experiencing a particular life pattern is $\Psi(1, k)$ where $k=1,2, \ldots, N$. The life patterns used are the

Iowa Survivor Curves. The curve numbers and average service life are represented by $\mathbf{Y}(2, k)$ and $Y(3, k)$ respectively.

| Iowa Survivor Curve | * |
| :---: | :---: |
| Square Curve | 1 |
| SC (.5) | 2 |
| So | 3 |
| SO(.5) | 4 |
| S(1) | 5 |
| S (1.5) | 6 |
| S (2) | 7 |
| S (3) | 8 |
| S (4) | 9 |
| S (5) | 10 |
| S (6) | 11 |
| SQ | 12 |
| L (0) | 13 |
| L (.5) | 14 |
| L (2) | 15 |
| L (1.5) | 16 |
| L (2) | 17 |
| L (3) | 18 |
| L (4) | 19 |
| L (5) | 20 |
| $\mathrm{R}(0.5)$ | 21 |
| R(1) | 22 |
| R (1.5) | 23 |
| R (2) | 24 |
| R(2.5) | 25 |
| R (3) | 26 |
| R (4) | 27 |
| R (5) | 28 |
| O(2) | 29 |
| 0 (3) | 30 |
| 0 (4) | 31 |

Card four of the set depicts the grouth patterns of the property account. Variable N represents the number of growth specifications over the life of the account. array $Y(1, k)$ denotes the year the k growth pattern is present and
$Y(2, k)$ holds the growth factor where $k=1,2 \ldots, N$.
Card five of the set sets the trend retirements. The number of trends is set to the variable N. The year the trends are in effect is in the array $¥(1, k)$. The trend percentage is in array $Y(2, k)$ where $k=1,2, \ldots, N$.

Card six of the set determines the depreciation rate. The number of rate changes is set equal to the variable N. The year the rates are in effect is in the array $Y(1, k)$. The rate itself is in array $Y(2, k)$ where $k=1,2, \ldots, N$.

Card seven is the randomization distribution of the property flowthrough. N represents the number of possible variations in which N wust be less than twenty. The percentage probability of occurrence is RM(1,k) where $k=1,2, \ldots, N$. The respective occurrence is found in $R M(2, k)$. The N is never changed and is used once again in subroutine PAGE1.

LOAD and CHANGE Subroutines
All the acconnt specifications are read into the I array. Using the LOAD and CHANGE subroutines this information is transferred to the A array. The following illustration demonstrates the use of these subroutines.

| y array | $y \mathrm{ar}$ | | | y arr | | y Eremay | | Y Array | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 card | 3 card | | | 4 card | | 5 び心起 | | 6 card | |
| Placements | Mortality Law | | | Growth | | Tream | | Depreciation Rate | |
| Year \＄000 | Year | \＃ | ASL | Year | \％ | Year | \％ | Year | Bate |
| 196110 | 1961 | 8 | 5 | 1961 | 0 | 1961 | 0 | 1961 | ． 200 |
| 196115 | 1664 | 18 | 7 | 1963 | －5 | 1964 | 3 | 1965 | .144 |

The above data which is assimulated into the A array is demonstrated below．

Year placement Mortality Lay ASL Growth Trend Rate

| 1961 | $\$ 10,000$ | 8 | 5 | 0% | 0% | .200 |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| 1962 | 8 | 5 | 0% | 0% | .200 | |
| 1963 | 8 | 5 | -5% | 0% | .200 | |
| 1964 | 18 | 7 | -5% | 3% | .200 | |
| 1965 | $\$ 15,000$ | 18 | 7 | -5% | 3% | .144 |

The Load subroutine puts the placement data in the a array．The CHANGE subroutine places the rest of the data． In order to place the information in the correct columns，the variable FCA denotes the column of A in which the informa－ tion shall be placed．For example，when the fourth card con－ taining the growth information is read and the CHANGE subrou－ tine is called，FCA is set to fize，whereas when the third card was read and the CHANGE subroutine called，FCA was set to three．

The SET1, SET2, and SET3 Subroutines
Before entry is made into loops two, three, and four of the main progran, certain variables must be initialized. These initializations are accomplished by the SET subroutines.

DMATRX Subroutine
The DMARTX subroutine distributes the property placed in service in the approfriate vector of the D array. The life distribution is calculated and found on the RR vector. $U(R D, 5)$ represents the amount of property to be placed in the RD year.

The DMATRX subroutine first establishes if there has been any change in the RR vector or if the DMATRX has ever been called. If not, then $D(R D, k)$ is calculated immediately. If one of the above conditions exists the appropriate portion of the tape is read so as to put the Ioma Survivor Curve into the SC vector. The arerage service life of this initial curve is one hundred years. Using linear interpolation, the percent surviving each year for the desired average service life is calculated and placed in the vector representing $f(k)$. The program constrains the life of any one property unit to a maximum of thirty years. In order to adjust for retirements during the first half year of a placement, the RR
vector representing $g(k)$ is calculated to represent subsequent retirements. The k value of $R R$ is $R R(k)=V(k+1) / z$ where $z=1-\nabla(1)$. In the last step $O\{R D, 5)$ is distributed in the $R R$ vector of the D array as $D(R D, k+1)=R R(k) * O(R D, 5)$. This leaves $D(R D, 1)=0$ which implies no immediate retirements. The variable R is the year of simulation for the property account.

RANDOM AND RANPER Subroutines
These two subroutines are used together and will also be discussed as such. The RANDOM subroutine generates a random number to be used in determining the percentage variation from the RM distribution. The seed is the property account number (SEED=IPA). The random namber RAN is the seventh and eighth digits of the square root of the previous seed. If the new SEED is less than or equal to one it is incremented by 3.356.

The RANPER subroutine takes the randor variable ran and finds the associated percent deviation which is called RANPER. This technique is commonly referred to as Monte Carlo simulation.

PMATRX subroutine
This routine sets up the P matrix, which is now referred to as $W B$, so that the proper flowthrough of property
in the D array may be calculated. The \quad B matrix is a 3×4 which contains all the needed information so the above mentioned multiplication can take place. Let a be an element of WB then the following matrix represents all of the elements of ${ }^{[1}$.

| $a(1,1)$ | $a(1,2)$ | $a(1,3)$ | $a(1,4)$ |
| :--- | :--- | :--- | :--- |
| $a(2,1)$ | $a(2,2)$ | $a(2,3)$ | $a(2,4)$ |
| $a(3,1)$ | $a(3,2)$ | $a(3,3)$ | $a(3,4)$ |

If the flow through of property in D is faster that expected the $a(1,1)=1$, $a(2,1)=a(3,2)=k$ the percent increase, $a(2,2)=a(3,3)=1-k$ and all other elements equal zero. on the other hand if there is a delay in property retirements then $a(1,2)=a(2,3)=a(3,4)=k$ the percentage delay, $a(i, i)=1-k$, and all other elements equal zero. If there is no change in flowthrough then in either case $k=0$.

DMUL:P Subroutine
The DMULTP subrontine multiplies the two matrices P and V . This routine multiplies one vector of D at a time by P. In order not to destroy the information in D an intermediate vector DD is used to hold the information. DD(1) is a functi:n of the first column of WB. DD(2) through DD (29) are functions of the second colamn of WB. DD (30) and DE(31) are functions of the third and fourth columns of WB respectively. The final calculation is $D(R D, k)=D D(k)$ which
transfers the desired information to D.

RENWL Subroutine
After one through RD vectors of the D array have been operated on, the RENHL subroutine sets up the information to be used in the next year's operation. The number of retirements which took place are labeled $0(R D N, 3)$ where REN $=\mathrm{RD}+$ 1. The amount of growth is calculated in $U(R D N, 4)$. and $U(R D N, 5)$ is the total property to be placed in service, a summation of $U(R D N, k)$ yhere $k=2,3,4$. The half year adjustment is calculated and placed in $U(R D N, 6)$ and total retirements are $U(R D N, 7)=U(R D N, 3)+U(R D N, 5)$. All previous property accounts are updated by subtracting the retirements from the survivors in each account by PA ($k, R D N)=P A(k, R D)-D(k, 1)$ where $k=1,2, \ldots . ., R D$.
, PAGE1. PAGE2, PAGE3, and PRNNT Subroutines (PagEl is a subroutine which prints a summary of the property account specifications listed in the six sets of data cards. This routine is called before either PAGE2 or Page3 is required.

The subroutine PAGE2 determines the variables R1 and R2 used in the PRNNT routine. The PRNNT subroutine writes out the property account Pa, the information in the $\|$ array, and lists the values calculated in the DEPRES subroutine.

Only seventeen years of information may be printed per page. Thus the use of variable R1 and R2 is to control the amount of output per page. The subroutine page3 prints the histograms yhich have been calculated by the ALSAGN subroutine.

HISTO1 and HISTO2 Subroutines
HISTO1 takes the appropriate information from the retirement $U(k, 7)$ vector as k as dictated by the ITP vector, and places it in the REN array. HISTO2 does the same for the depreciation reserve vector DEPRES (k) except these facts are stored in the RES array. The columns of RES and REN represent the particular years of interest and the rows are the number of simulations being observed.

CEPRES Subroutine

This routine calculates the depreciation charge DCHRD(k) in the k year using the average life procedure. Other information calculated is the depreciation reserve DEPRES (k) , the accrued depreciation $A D(k)$, the accumulated renewals RENTOT (k), and the property in service PLANT(k).

HISAGN Subroutine
The BISAGN arranges the information accumulated in the RES and REN arrays into a histogram. The information is di-

Abstract

vided into eleven groups. The smallest value $S M(k)$ of each test period k is retained as well as the range of each group DELTA (k). Once the range is established (PL, PH) for the histogram $H I(i, k)$ where $i=1,2, \ldots, 11$ and $k=1,2, \ldots, N P T S$ the DI array is search for a number in that range. If one is found it is noted in the $H I(i, k)$ array. When all numbers of DI have be noted in whatever range they belong, $H I(i, k)$ is divided by NTR to place the histogram on a decimal basis.

mOSIG Subroutine

This routine calculates the mean and variance of the depreciation reserve. It also calulates the standard deviation of the distribution of means. These facts are placed in the $N T R+1$, $N T R+2$, and $N T R+3$ positions respectively of the RES array in the appropriate year. MUSIG is called from with in the PAGE3 subroutine and returns the aforementioned information to be printed.

BUG Subroutine
This was a major debug routine. Programming experience dictates it to be helpful if a debug routine is written right into the main program and subroutines. It was hoped such a routine would help simplify the debugging and testing process. Anytine output from any point was desired the point was labeled k, and CALi BUG (k) was written. k was a fixed
number and referred to a particular urite statement in the BUG subroutine. Before the subroutine printed any information the array $K K K K(k)$ was checked to ascertain whether it was zero or one. If zero, no output was printed, or if one, the write statement was reached, and the desired information was printed. In this manner the CALL $B O G(k)$ statement could be placed and left in the program subject to use only if the very first card read contained a one in the k column. This routine kept the progran legible in early debug and test stages. Accordingly it was left in for future users.

section D: Major Arrays and Variables

This section describes the purpose of major arrays and variables which are listed alphabetically.

1. $A(51,7)-$-Property specifications are held in this array. Column one holds the years of the property account in consecutive order. The dollar of property placed. Iowa Survivor Curve number, average service life, growth factor, and trend factor are found in columns two through six respectively.
2. $A D(51)$--The accumulated depreciation charges for each year are stated in the $A D$ array.
3. ASL--The average service life of the year of the property account being simulated.
4. ASLX-The average service life of the previous year.
5. CKY--The label for the actual year.
6. $D(51,31)-$ Each new vector holds the distribution of life remaining for property placed in that year. The element $D\left(r_{r} c\right)$ represents the amount of property with c-1 years of life remaining which was placed in service in the r year. 7. DCBARD (53) --This array holds the depreciation charges. The information is printed by the PAGE2 subroutine. 8. $D D(31)$-When each row vector of the D array is updated the information is temporarily stored in this array and
eventually transferred to D.
7. DELREN (10)--This array is equivalent to DELTA (10) found
in the HISAGN subroutine. It holds the reneval histograms ranges for each of the ten observations points. The information is used in the pAGE3 subroutine which prints the histogram.
8. DELRES(10)--Used in the same manner as DELREN(10) except it stores range information concerning the depreciation reserve.
9. DELTA (10) --The array is used in the HISAGN subroutine and is equivalent to DELRES (10) or DELREN(10).
10. DI (100, 10)--This array is used in the HISAGN subroutine and is equivalent to $\operatorname{REN}(100,10)$ or $\operatorname{RES}(100,10)$.
11. DIAG1--The diagonal information of the P matrix is held and is used to set up the compact $N B(3,4)$ matrix.
12. DIAG2--The variable retains DIAG1 information used previously. If flag equals one and DIAG1 equals DIAG2 then the PMATRIX subroutine is not used for that year.
13. DRES (50)--The depreciation reserve per year is stored and the information is printed by the page2 subroutine. 16. E-A variable calculated form $F Y-L Y+1$ which represents the duration in years of the property account being simulated.
14. FCA--A column counter preset by the calling of subroutine CHANGE. It denotes the column of the A array that the
information from the y array will be placed.
15. FLAG--If flag is zero, the complete DHATRX subroutine is utilized, othervise it is optional subject to use if the Iowa Survivor Curve changes.
16. FY--The variable represents the first year of the property account.
17. HI (11, 10) -This array is used in the HISAGN subroutine and is equivalent to $\operatorname{RENH}(11,10)$ or $\operatorname{RESH}(11,10)$.
18. IOH-This variable controls whether HISTO1, HISTO2, and HISAGN subroutines are entered and whether the PAGE3 subroutine is printed.
19. IOPA--This variable controls whether PAGE1 subroutine is printed.
20. IPA--The property account number is held under this variable name.
21. IRON--IROM is the counter of the number of simulations to be made on each account.
22. ITP(10)--The ITP array holds the position in relation to FY at which the variation in renewals and depreciation reserve is to be observed. a maximum of ten observations is possible.
23. KKKK (80) --This array controls the printing section of the BUG subroutine. If $K K K K(k)$ is one and $B U G(k)$ is called then debug information vill be printed. If KKKK(k) is zero no information will be written.
24. LY-The last year of the property account is represented by this variable.
25. N--The variable is used in the INPUT subroutine denoting the number of changes of data per card. It is last used in counting the number of variations in the flowthrough distribution and retains this value.
26. NPTS--The number of observation points in the property account is fixed by the variable.
27. NTR-This variable represents the number of simulated runs per property account.
28. ONE-ONE is set equal to numeral one because the author kept mixing up 1 and I on the keypunch.
29. Pa(51,51)-This array holds the property account records. Each row is a vintage account of the property placed in service that year. PA(r, c) represents the amount of property remaining at time c from that which was put in service at time r. The information is printed by the PRNNT subroutine.
30. PLANT (50) --The quantity of property in service is stored in this array. The information is utilized in calculating the depreciation charge and is printed by the PRNNT subroutine.
31. R1 and R2--The range of the years to be printed from the property account. These values are calculated in the page2 subroutine and utilized in the PRNST subroutine.
32. RA\&-RAN is a two digit random number generated by the RANDOM subroutine.
33. RD-The year in which the simulation being conducted on the property account is denoted by this variable. 37. REN $(100,10)$--This array collects the renewal data which will be arranged by the RISAGN subroutine. REN(r, C) represents the number of renewals in the r simulation at the c observation point.
34. RENA $(11,10)-$ The histogram of renewals is stored in this array. RENH (r, C) is the percent of renewals in the r grouping on observation point c.
35. RENTOT (50) --the accumulated renewals are held in this array. RENTOT (k) denotes the total renewals at the k time period. The information is used in calculating the depreciation reserve and is printed by the PRNNT subroutine. 40. RES (100,10)-This array is utilized in the same manner as REN except that depreciation reserve information is collected.
36. RESH $(11,10)-$ This array is utilized in the same manner as RENH $(11,10)$ except it is a histogram of depreciation reserve values.
37. $R M(20,2)$--The flow though variation distribution is stored in this array. The variation and probability of occurrence are represented by columns one and two respective1Y.
38. RPER-The variable denotes the random flowthrough variation.
39. RR(31)--The adjusted life distribution of the property is held in this array.
40. RRPER-This variable represents the flowthrough variation due to change in average service life from one year to another.
41. SC (400)-This array holds the Iowa Survivor Curve that is originally read off the tape. $S C(k)$ denotes the percent surviving in year k. The average service life is one hundred years.
42. SEED-This variable is the random number generator seed and is initially set equal to IPA.
43. $S M(10)$-This array is used in the BISAGN subroutine and is equivalent to SMRES (10) or SMREN(10).
44. SMRES (10) --The array serves the same purpose as SMREN(10) except it holds the smallest value of the depreciation reserve in the k observation point. 51. SUCU-The Iowa Survivor Curve number is denoted by this variable.
45. SUCUX--The Iowa Survivor Curve number in the previous year is held by this variable.
46. TAPE-The input number of the magnetic tape equals ten and is denoted by this variable.
47. $U(51,7)$-The operational data of the property account
are recorded in this array. The year, major property placements, renevals, grouth, total property to be placed in service, placement adjustment, and the total retirements are found in columns one through seven respectively. 55. $V(31)$--This array holds the distribution density of the Iowa Survivor Curve before adjustnent is made.
48. WB(3,4)--This array contains the information required in the p matrix. It was used to save computer storage, othervise a fifty-one by fifty matrix would be required. 57. $Y(51,3)$--Information of the second through fifth data cards is held.

APPENDIX II:
MISCELLANEOUS FORMULA DEVELOPMENT

Section A

$$
\begin{aligned}
& \sum \mathrm{Xf}(\mathrm{x})=1 \mathrm{f}(\mathrm{i})+2 \mathrm{f}(2)+3 \mathrm{f}(3)+\ldots \ldots+\mathrm{nf}(\mathrm{n}) \\
& \mathrm{ASL}=\mathrm{f}(1) / 4+1 \mathrm{f}(2)+2 \mathrm{f}(3)+\ldots+(n-1) \mathrm{f}(\mathrm{n}) \\
& \begin{aligned}
\sum \mathrm{Xf}(\mathrm{X})-\mathrm{ASL} & =-\mathrm{f}(1) / 4+f(1)+f(2)+\ldots+f(n) \\
& =1-f(1) / 4
\end{aligned}
\end{aligned}
$$

Section B

$$
\begin{aligned}
g(x) & =f(x+1) /(1-f(1)) \\
\sum x g(x) & =1 g(1)+2 g(2)+3 g(3)+\ldots+(n-1) g(n-1) \\
& =(1 f(2)+2 f(3)+3 f(4)+\ldots+(n-1) f(n)) /(1-f(1))
\end{aligned}
$$

The above expression is reasonably close to

$$
A S L=f(1) / 4+1 f(2)+2 f(3)+3 f(4)+\ldots+(n-1) f(n)
$$

Section C

Let: ASL=average service life of property presently being placed in service.

ASLP=average service life of property when it was previously placed in service.

RR=retirement rate=1/ASL

RRP=retirement rate=1/ASLP
The percentage increase(+) or decrease(-) in retirement rate is

$$
(R R-R R P) / R R P
$$

Expressing the above equation in terms of average service lives it becomes

$$
((1 / A S L)-(1 / A S L P)) /(1 / A S L P)=(A S L P-A S L) / A S L
$$

APPENDIX III:

PROBABILITY OF MISCLASSIFICATION

Let $p(i)$ be a uni-variate normally distributed population with mean $u(i)$ and variance ∇. Let $r(i)$ represent a region of classification such that if an observation is in r(i). it is classified to be in population $p(i)$. Let $q(i)$ denote the priori probability that an observation is from $p(i)$. Finally, let $c(i) j)$ represent the cost of classifying the observation in i when it is in j.

From Anderson (2, p. 134) the best regions of classification for an observation z are given by: $r(1): z[u(1)-u(2)] / V-[u(1)-u(2)][u(1)+u(2)] / 2 v \geq \log (k)$ $r(2): z[u(1)-u(2)] / v-[u(1)-u(2)][u(1)+u(2)] / 2 v<\log (k)$ where $k=q(2) c(1 \mid 2) / q(1) c(2 \mid 1)$

If the costs are identical, and the two populations equally like, then $k=1$, and $\log (k)=0$. This implies the classification criteria is at the midpoint of the two means. Anderson (2, p. 137) suggests when the means and variances are estimated, that $u(i)$ be replaced by the estimate \bar{x} and v be replaced by the estimate s^{2}. Let $c=l o g(k)$. Consider r(1):
$z>\left\{\log (k)+[\bar{x}(0 \%)+\bar{x}(p \%)][\bar{x}(0 \%)-\bar{x}(p \%)] / 2 s^{2}\right\} /\left[[\bar{x}(0 \%)-\bar{x}(p \%)] / s^{2}\right\}$
Since $\bar{x}(0 \%)>\bar{x}(p \%)$; the probability of
misclassification will be examined for a criteria of $z \geq$ $\bar{x}(0 \%)-x$ where $x=i s$. For this criteria
$c=\{[\bar{x}(0 \%)-x][\bar{x}(0 \%)-\bar{x}(p x)]-[\bar{x}(0 \%)+\bar{x}(p \%)][\bar{x}(0 \%)-\bar{x}(p \%)] / 2\} / s^{2}$ Note that if $\bar{x}(0 \%)-x$ is the midpoint. $\{\bar{x}(0 \%)-\bar{x}(p \%)\} / 2$. then c again equals zero.

The probabilities of miscizssification $p(0 \% \mid p \%, x)$ were based on a value x, a distance from $\bar{x}(0, z)$. Anderson (2, p. 135) calculated the probability of misclassification as $\dot{p}(0 \% \mid p \%)=k \int_{b}^{\infty} \exp \left(-y^{2} / 2\right) d y$
where $k=1 / \sqrt{2 \pi}$
$b=(c+a / 2) / \sqrt{a}$
$a=[\bar{x}(0 \%)-\bar{x}(p x)][\bar{x}(0 \%)-\bar{x}(p \%)] / s^{2}$

APPENDIX IV:

TABULATION OF TRIALS 1-4

Initial Placement: \$10,000 Mortality Characteristics: $\mathrm{S}(3)-5$

| ASL | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: |
| Year | | | |
| 1 | 1000 | 833 | 714 |
| 2 | 2993 | 2498 | 2142 |
| 3 | 4821 | 4109 | 3550 |
| 4 | 5853 | 5396 | 4821 |
| 5 | 5521 | 5899 | 5687 |
| 6 | 4433 | 5441 | 5875 |
| 7 | 3928 | 4519 | 5382 |
| 8 | 4399 | 3954 | 4583 |
| 9 | 5005 | 4131 | 4016 |
| 10 | 5056 | 4704 | 3995 |
| 11 | 4718 | 5085 | 4413 |
| 12 | 4467 | 5042 | 4892 |
| 13 | 4523 | 4750 | 5116 |
| 14 | 4724 | 4502 | 5030 |
| 15 | 4815 | 4459 | 4774 |
| 16 | 4741 | 4613 | 4540 |
| 17 | 4635 | 4773 | 4455 |
| 18 | 4617 | 4822 | 4531 |
| 19 | 4673 | 4755 | 4682 |
| 20 | 4721 | 4658 | 4801 |

Pure Depreciation Reserve Values-\$

Initial Placement: $\$ 10,000$
Mortality Characteristics: $\mathrm{S}(3)-5$ Trends Begin in Year Eleven

| Trend
 Year | 3\% | 5% | 7% |
| :--- | :---: | :---: | :---: |
| 11 | 4651 | 4606 | 4561 |
| 12 | 4352 | 4275 | 4199 |
| 13 | 4369 | 4267 | 4166 |
| 14 | 4519 | 4383 | 4247 |
| 15 | 4548 | 4371 | 4193 |
| 16 | 4421 | 4208 | 3995 |
| 17 | 4277 | 4039 | 3801 |
| 18 | 4222 | 3959 | 3696 |
| 19 | 4230 | 3934 | 3637 |
| 10 | 4220 | 3884 | 3549 |

Section C

```
Pure Depreciation Reserve Values-$
Mortality Characteristics: S(3)-5
    Initial placement: $10,000
    Growth Begins in year Two
        Growth 3% 7%
            Year
```

| 1 | 1000 | 1000 |
| ---: | ---: | ---: |
| 2 | 3023 | 3063 |
| 3 | 4942 | 5106 |
| 4 | 6127 | 6494 |
| 5 | 5974 | 6617 |
| 6 | 5065 | 5992 |
| 7 | 4711 | 5907 |
| 8 | 5324 | 6792 |
| 9 | 6090 | 7873 |
| 10 | 6324 | 8476 |
| 11 | 6175 | 8731 |
| 12 | 6109 | 9090 |
| 13 | 6348 | 9783 |
| 14 | 6741 | 10669 |
| 15 | 7034 | 11507 |
| 16 | 7170 | 12238 |
| 17 | 7280 | 12989 |
| 18 | 7480 | 13880 |
| 19 | 7761 | 14908 |
| 20 | 8041 | 15999 |

```
Section D
```


Pure Depreciation Reserve Values-\$

Initial Placement: $\$ 10,000$ Mortality Characteristics: Years 1-9: $\mathrm{S}(3)-5$
Years 10-20: $R(1)-7$

| YearDepreciation
 Rate | Reserve
 $\$$ | Depreciation
 Rate | Reserve
 $\$$ | |
| :---: | :---: | :---: | :---: | :---: |
| | | | | |
| 10 | 0.200 | 5056 | 0.143 | 4486 |
| 11 | 0.200 | 5266 | 0.143 | 4126 |
| 12 | 0.200 | 5443 | 0.143 | 3733 |
| 13 | 0.200 | 5715 | 0.143 | 3435 |
| 14 | 0.200 | 6141 | 0.143 | 3291 |
| 15 | 0.200 | 6722 | 0.143 | 3302 |
| 16 | 0.200 | 7416 | 0.143 | 3425 |
| 17 | 0.200 | 8157 | 0.143 | 3547 |
| 18 | 0.200 | 8877 | 0.143 | 3747 |
| 19 | 0.200 | 9534 | 0.143 | 3834 |
| 20 | 0.200 | 10111 | 0.143 | 3841 |

| Year | Depreciation
 Rate | Reserve
 $\$$ |
| :---: | :---: | :---: |
| | | |
| 10 | 0.200 | 5056 |
| 11 | 0.200 | 5266 |
| 12 | 0.143 | 4873 |
| 13 | 0.143 | 4575 |
| 14 | 0.143 | 4431 |
| 15 | 0.143 | 4442 |
| 16 | 0.143 | 4566 |
| 17 | 0.143 | 4737 |
| 18 | 0.143 | 4887 |
| 19 | 0.143 | 4974 |
| 20 | 0.143 | 4981 |

APPENDIX V:

TABULATION OF TRIAL 5

Simulated Depreciation Reserve Values-\$
Initial Placement: \$10.000 Mortality Characteristics: $S(3)-5$

| Year
 Account | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 4481 | 4275 | 4446 | 4629 | 4804 | 4742 | 4709 | 4688 | 4833 | 4936 |
| 2 | 5183 | 4930 | 4987 | 5146 | 5338 | 5319 | 5169 | 5134 | 5173 | 5226 |
| 3 | 4748 | 4575 | 4672 | 4300 | 4835 | 4780 | 4634 | 4568 | 4624 | 4571 |
| 4 | 4797 | 4503 | 4614 | 4990 | 4928 | 4876 | 4785 | 4708 | 4758 | 4804 |
| 5 | 4691 | 4525 | 4556 | 4729 | 4877 | 4927 | 4775 | 4692 | 4681 | 4735 |
| 6 | 4805 | 4571 | 4599 | 4770 | 4799 | 4744 | 4720 | 4765 | 4811 | 4791 |
| 7 | 4872 | 4637 | 4602 | 4711 | 4801 | 4698 | 4624 | 4610 | 4653 | 4692 |
| 8 | 5090 | 4731 | 4736 | 4966 | 5022 | 5051 | 5069 | 4976 | 5011 | 5058 |
| 9 | 4582 | 4438 | 4507 | 4699 | 4836 | 4763 | 4664 | 4709 | 4859 | 4844 |
| 10 | 4612 | 4388 | 4552 | 4799 | 4892 | 4826 | 4724 | 4644 | 4698 | 4806 |
| 11 | 4470 | 4377 | 4506 | 4748 | 4832 | 4701 | 4546 | 4539 | 4546 | 4599 |
| 12 | 4907 | 4773 | 4893 | 5008 | 5046 | 4938 | 4923 | 4855 | 4965 | 5106 |
| 13 | 4714 | 4422 | 4422 | 4549 | 4693 | 4645 | 4563 | 4604 | 4642 | 4679 |
| 14 | 4724 | 4504 | 4499 | 4614 | 4689 | 4738 | 4727 | 4710 | 4746 | 4779 |
| 15 | 4781 | 4539 | 4517 | 4637 | 4822 | 4842 | 4826 | 4801 | 4775 | 4752 |
| 16 | 4837 | 4655 | 4628 | 4809 | 5002 | 5061 | 4911 | 4823 | 4807 | 4920 |
| 17 | 4729 | 4607 | 4637 | 4820 | 4857 | 4735 | 4584 | 4639 | 4703 | 4756 |
| 18 | 4827 | 4525 | 4557 | 4791 | 4893 | 4783 | 4628 | 4607 | 4761 | 4878 |
| 19 | 4598 | 4390 | 4462 | 4708 | 4787 | 4650 | 4495 | 4592 | 4714 | 4827 |
| 20 | 4645 | 4414 | 4472 | 4714 | 4856 | 4732 | 4639 | 4726 | 4877 | 4766 |
| 21 | 4732 | 4508 | 4551 | 4671 | 4847 | 4794 | 4710 | 4637 | 4622 | 4602 |
| 22 | 4776 | 4554 | 4665 | 4849 | 4877 | 4811 | 4782 | 4769 | 4764 | 4745 |
| 23 | 4998 | 4682 | 4646 | 4768 | 4873 | 4836 | 4813 | 4783 | 4758 | 4739 |
| 24 | 4699 | 4463 | 4514 | 4792 | 4882 | 4822 | 4788 | 4824 | 4810 | 4855 |
| 25 | 4791 | 4571 | 4553 | 4723 | 4806 | 4753 | 4608 | 4692 | 4735 | 4782 |
| 26 | 4908 | 4605 | 4580 | 4701 | 4797 | 4818 | 4737 | 4651 | 4687 | 4788 |
| 27 | 4704 | 4544 | 4647 | 4825 | 4851 | 4727 | 4582 | 4581 | 4646 | 4754 |
| 28 | 4654 | 4447 | 4498 | 4672 | 4751 | 4688 | 4699 | 4679 | 4725 | 4826 |
| 29 | 4808 | 4694 | 4655 | 4816 | 4908 | 4804 | 4723 | 4704 | 4749 | 4733 |
| 30 | 4694 | 4455 | 4568 | 4845 | 4877 | 4756 | 4609 | 4605 | 4723 | 4779 |

Simulated Depreciation Reserve Values-\$

Initial Placement: $\$ 10,000$ Mortality Characteristics: $S(3)-5$ 3% trend beginning in year 11

| Year | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Account

| 1 | 4487 | 4279 | 4254 | 4453 | 4571 | 4378 | 4232 | 4176 | 4130 | 4126 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 4607 | 4339 | 4396 | 4519 | 4539 | 4481 | 4443 | 4319 | 4252 | 4173 |
| 3 | 4721 | 4500 | 4492 | 4607 | 4622 | 4446 | 4323 | 4335 | 4399 | 4381 |
| 4 | 4651 | 4436 | 4432 | 4487 | 4434 | 4324 | 4157 | 4122 | 4122 | 4100 |
| 5 | 5077 | 4708 | 4616 | 4675 | 478.1 | 4638 | 4574 | 4598 | 4520 | 4501 |
| 6 | 4523 | 4194 | 4283 | 4436 | 4461 | 4388 | 4234 | 4175 | 4240 | 4328 |
| 7 | 4545 | 4214 | 4234 | 4467 | 4566 | 4446 | 4288 | 4213 | 4159 | 4159 |
| 8 | 4559 | 4225 | 4347 | 4552 | 4649 | 4517 | 4289 | 4163 | 4181 | 4135 |
| 9 | 4838 | 4539 | 4628 | 4862 | 4850 | 4666 | 4458 | 4466 | 4434 | 4493 |
| 10 | 4581 | 4308 | 4274 | 4349 | 4302 | 4251 | 4136 | 4090 | 4140 | 4110 |
| 11 | 4675 | 4455 | 4463 | 4538 | 4490 | 4369 | 4352 | 4371 | 4370 | 4333 |
| 12 | 4560 | 4352 | 4356 | 4418 | 4367 | 4355 | 4299 | 4312 | 4299 | 4197 |
| 13 | 4701 | 4464 | 4519 | 4602 | 4624 | 4600 | 4563 | 4446 | 4380 | 4298 |
| 14 | 4656 | 4320 | 4424 | 4555 | 4586 | 4406 | 4207 | 4100 | 4176 | 4179 |
| 15 | 4810 | 4522 | 4447 | 4560 | 4650 | 4553 | 4363 | 4235 | 4227 | 4325 |
| 16 | 4601 | 4270 | 4304 | 4454 | 4542 | 4414 | 4202 | 4084 | 4192 | 4256 |
| 17 | 4477 | 4300 | 4318 | 4458 | 4536 | 4467 | 4260 | 4198 | 4396 | 4390 |
| 18 | 4594 | 4331 | 4342 | 4471 | 4433 | 4418 | 4286 | 4232 | 4171 | 4090 |
| 19 | 4841 | 4495 | 4499 | 4698 | 4742 | 4561 | 4410 | 4407 | 4422 | 4359 |
| 20 | 4917 | 4610 | 4532 | 4597 | 4570 | 4475 | 4362 | 4369 | 4359 | 4272 |
| 21 | 4753 | 4463 | 4456 | 4585 | 4716 | 4606 | 4464 | 4451 | 4505 | 4435 |
| 22 | 4846 | 4559 | 4554 | 4619 | 4651 | 4548 | 4421 | 4305 | 4398 | 4385 |
| 23 | 4661 | 4477 | 4415 | 4477 | 4433 | 4328 | 4280 | 4236 | 4166 | 4131 |
| 24 | 4640 | 4362 | 4429 | 4628 | 4661 | 4464 | 4251 | 4145 | 4173 | 4181 |
| 25 | 4648 | 4327 | 4345 | 4472 | 4492 | 4377 | 4244 | 4287 | 4285 | 4268 |
| 26 | 4725 | 4518 | 4597 | 4654 | 4677 | 4565 | 4378 | 4330 | 4334 | 4321 |
| 27 | 4758 | 4454 | 4445 | 4634 | 4768 | 4592 | 4383 | 4259 | 4273 | 4344 |
| 28 | 4749 | 4453 | 4443 | 4517 | 4549 | 4503 | 4431 | 4365 | 4291 | 4204 |
| 29 | 4885 | 4520 | 4450 | 4581 | 4567 | 4469 | 4340 | 4279 | 4276 | 4263 |
| 30 | 4842 | 4435 | 4551 | 4637 | 4736 | 4722 | 4511 | 4439 | 4437 | 4375 |

Simulated Depreciation Reserve Values-\$
Initial Placement: $\$ 10,000$
Mortality Characteristics: $S(3)-5$
5% trend beginning in year 11

Simulater Depreciation Reserve Values-\$
Initial Placement: $\$ 10,000$ Mortality Characteristics: $S(3)-5$
7% trend beginning in year 11

| Year
 Account | 11 | 12 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 4565 | 4263 | 4148 | 4258 | 4140 | 3957 | 3778 | 3617 | 3552 | 3463 | |
| 2 | 4535 | 4246 | 4188 | 4246 | 4250 | 4165 | 3907 | 3725 | 3593 | 3516 | |
| 3 | 4647 | 4290 | 4225 | 4278 | 4166 | 3988 | 3869 | 3821 | 3751 | 3586 | |
| 4 | 4714 | 4355 | 4227 | 4220 | 4170 | 3945 | 3776 | 3669 | 3599 | 3507 | |
| 5 | 4932 | 4506 | 4374 | 4495 | 4411 | 4302 | 4203 | 4014 | 3936 | 3845 | |
| 6 | 4427 | 4163 | 4143 | 4213 | 4203 | 3997 | 3804 | 3758 | 3793 | 3641 | |
| 7 | 4456 | 4121 | 4186 | 4325 | 4268 | 4052 | 3841 | 3682 | 3636 | 3615 | |
| 8 | 4315 | 4097 | 4135 | 4265 | 4189 | 3905 | 3652 | 3569 | 3472 | 3389 | |
| 9 | 4750 | 4487 | 4514 | 4526 | 4404 | 4143 | 4025 | 3885 | 3888 | 3888 | |
| 10 | 4558 | 4154 | 4062 | 4070 | 4077 | 3901 | 3718 | 3659 | 3584 | 3491 | |
| 11 | 4566 | 4227 | 4126 | 4119 | 4054 | 3983 | 3871 | 3753 | 3660 | 3552 | |
| 12 | 4622 | 4259 | 4145 | 4146 | 4195 | 4084 | 3956 | 3824 | 3673 | 3520 | |
| 13 | 4677 | 4366 | 4252 | 4314 | 4362 | 4282 | 4023 | 3832 | 3695 | 3680 | |
| 14 | 4572 | 4322 | 4267 | 4336 | 4218 | 3961 | 3723 | 3695 | 3647 | 3556 | |
| 15 | 4670 | 4254 | 4195 | 4316 | 4279 | 4034 | 3776 | 3666 | 3713 | 3702 | |
| 16 | 4443 | 4123 | 4102 | 4229 | 4165 | 3900 | 3649 | 3649 | 3662 | 3639 | |
| 17 | 4484 | 4131 | 4094 | 4214 | 4214 | 3956 | 3760 | 3746 | 3787 | 3642 | |
| 18 | 4577 | 4238 | 4189 | 4191 | 4234 | 4050 | 3861 | 3686 | 3555 | 3413 | |
| 19 | 4620 | 4285 | 4300 | 4371 | 4253 | 4054 | 3925 | 3828 | 3710 | 3550 | |
| 20 | 4840 | 4409 | 4285 | 4294 | 4258 | 4092 | 3969 | 3850 | 3713 | 3558 | |
| 21 | 4543 | 4195 | 4154 | 4317 | 4266 | 4068 | 3923 | 3865 | 3746 | 3654 | |
| 22 | 4636 | 4300 | 4191 | 4242 | 4188 | 4012 | 3773 | 3760 | 3692 | 3602 | |
| 23 | 4748 | 4319 | 4201 | 4201 | 4155 | 4051 | 3873 | 3694 | 3611 | 3581 | |
| 24 | 4548 | 4266 | 4276 | 4342 | 4216 | 3953 | 3715 | 3634 | 3588 | 3559 | |
| 25 | 4499 | 4178 | 4131 | 4190 | 4131 | 3945 | 3858 | 3747 | 3675 | 3633 | |
| 26 | 4651 | 4400 | 4272 | 4315 | 4255 | 4018 | 3847 | 3745 | 3678 | 3527 | |
| 27 | 4537 | 4187 | 4204 | 4373 | 4260 | 3990 | 3732 | 3641 | 3663 | 3585 | |
| 28 | 4715 | 4350 | 4214 | 4309 | 4324 | 4205 | 4007 | 3821 | 3686 | 3547 | |
| 29 | 4716 | 4300 | 4253 | 4272 | 4229 | 4046 | 3858 | 3748 | 3683 | 3693 | |
| 30 | 4679 | 4404 | 4300 | 4416 | 4462 | 4211 | 4012 | 3894 | 3775 | 3698 | |

APPENDIX VI:

SUMMARY OF TRIAL 5

Simulated Depreciation Reserve Variances

| Trend | 0\% | 3\% | 5\% | 7\% | Pool |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Year | | | | | |
| 11 | 24.297 | 19.703 | 13.788 | 16,330 | 18.529 |
| 12 | 18,990 | 15.700 | 11.881 | 11,368 | 14.484 |
| 13 | 14,737 | 11.537 | 9.772 | 8,297 | 11.085 |
| 14 | 14.791 | 10.711 | 9.254 | 9,843 | 11.149 |
| 15 | 14.519 | 16, 378 | 11.173 | 8,527 | 12.649 |
| 16 | 19.030 | 12.435 | 16.497 | 11.389 | 14.837 |
| 17 | 22,060 | 12.726 | 8,635 | 15,662 | 14.770 |
| 18 | 15,885 | 16.176 | 8,666 | 9,779 | 12.626 |
| 19 | 15,794 | 13.202 | 12.701 | 9.346 | 12.760 |
| 20 | 19.707 | 13.849 | 13,546 | 11,644 | 14.686 |

Simulated Depreciation Reserve Means \$

| Trend
 Year | | 0% | 3% | 5% |
| :---: | :---: | :---: | :---: | :---: |
| 11 | 4762 | 4698 | 4657 | 4609 |
| 12 | 4546 | 4417 | 4338 | 4274 |
| 13 | 4592 | 4429 | 4319 | 4213 |
| 14 | 4774 | 4553 | 4419 | 4281 |
| 15 | 4870 | 4586 | 4399 | 4233 |
| 16 | 4812 | 4478 | 4211 | 4042 |
| 17 | 4726 | 4338 | 4097 | 3857 |
| 18 | 4711 | 4284 | 4014 | 3730 |
| 19 | 4762 | 4287 | 3987 | 3681 |
| 20 | 4808 | 4271 | 3940 | 3594 |

| Pure Depreciation
 $\$$ | Reserve Values | | | |
| :---: | :--- | :--- | :--- | :--- |
| Trend | 0% | 3% | 5% | 7% |
| Year | | | | |
| 11 | 4718 | 4651 | 4606 | 4561 |
| 12 | 4468 | 4352 | 4275 | 4199 |
| 13 | 4523 | 4369 | 4267 | 4166 |
| 14 | 4724 | 4519 | 4383 | 4247 |
| 15 | 4815 | 4548 | 4371 | 4193 |
| 16 | 4741 | 4421 | 4208 | 3995 |
| 17 | 4635 | 4277 | 4039 | 3801 |
| 18 | 4617 | 4222 | 3959 | 3696 |
| 19 | 4673 | 4230 | 3934 | 3637 |
| 20 | 4721 | 4220 | 3884 | 3549 |

APPENDIX VII:

PROBABILITY OF MISCLASSIFICATION DATA

Criteria is x standard

deviations from $\times(0 \%, z)$

P(0\%|3\%, x)

| | x | 0.5 | 1.0 | 1.5 | 2.0 | 2.5 | 3.0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| year mid point | | | | | | | |
| 11 | 0.512 | 0.702 | 0.848 | 0.936 | 0.978 | 0.994 | 0.405 |
| 12 | 0.284 | 0.472 | 0.666 | 0.824 | 0.924 | 0.973 | 0.295 |
| 13 | 0.147 | 0.291 | 0.430 | 0.674 | 0.829 | 0.926 | 0.221 |
| 14 | 0.056 | 0.138 | 0.278 | 0.464 | 0.659 | 0.819 | 0.146 |
| 15 | 0.021 | 0.063 | 0.154 | 0.298 | 0.488 | 0.681 | 0.104 |
| 16 | 0.013 | 0.041 | 0.107 | 0.230 | 0.405 | 0.599 | 0.086 |
| 17 | 0.004 | 0.014 | 0.046 | 0.106 | 0.245 | 0.425 | 0.056 |
| 18 | 0.000 | 0.003 | 0.011 | 0.036 | 0.097 | 0.212 | 0.029 |
| 19 | 0.000 | 0.000 | 0.003 | 0.014 | 0.044 | 0.115 | 0.018 |
| 20 | 0.000 | 0.000 | 0.002 | 0.008 | 0.027 | 0.077 | 0.014 |

P(0\%|5\%, x)

| | x | 0.5 | 1.0 | 1.5 | 2.0 | 2.5 | 3.0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Year mid point | | | | | | | |
| 11 | 0.394 | 0.591 | 0.768 | 0.891 | 0.958 | 0.987 | 0.348 |
| 12 | 0.111 | 0.236 | 0.409 | 0.606 | 0.779 | 0.898 | 0.194 |
| 13 | 0.018 | 0.056 | 0.138 | 0.278 | 0.464 | 0.659 | 0.099 |
| 14 | 0.002 | 0.010 | 0.033 | 0.092 | 0.206 | 0.378 | 0.049 |
| 15 | 0.000 | 0.000 | 0.004 | 0.014 | 0.046 | 0.117 | 0.018 |
| 16 | 0.000 | 0.000 | 0.000 | 0.005 | 0.017 | 0.054 | 0.011 |
| 17 | 0.000 | 0.000 | 0.000 | 0.000 | 0.004 | 0.015 | 0.005 |
| 18 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 19 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 20 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |

P(0\%17\%,x)

| | x | 0.5 | 1.0 | 1.5 | 2.0 | 2.5 | 3.0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Year mid point | | | | | | | |
| 11 | 0.268 | 0.452 | 0.648 | 0.811 | 0.916 | 0.970 | 0.288 |
| 12 | 0.039 | 0.104 | 0.224 | 0.397 | 0.595 | 0.770 | 0.129 |
| 13 | 0.000 | 0.005 | 0.018 | 0.055 | 0.136 | 0.274 | 0.036 |
| 14 | 0.000 | 0.000 | 0.000 | 0.004 | 0.015 | 0.046 | 0.000 |
| 15 | 0.000 | 0.000 | 0.000 | 0.000 | 0.002 | 0.004 | 0.000 |
| 16 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 17 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 18 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 19 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 10 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |

